REPORT DOCUMENTATION PAGE . o

. _-_AFRL-SR-AR-TR-05-
The public reporting burden for this jon of infi ion is esti d to ge 1 hour per response, including .
gathering and maintaining the data ded, and pleting and reviewing the collection of inf i Send
infor! including suggesti for reducing the burden, to Department of Defense, Washington Headquarters Servi
1215 Jefferson Davie Highway, Suite 1204, Arlington, VA 22202-4302, Resporidents should be aware that notwith OO o/
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

7. REPORT DATE (DD-MM-YYYY) | 2. REPORT TYPE 3 DATES GOVERED (From -ToJ = — —
Final 12 December 2000 - 30 November 2004
3. TITLE AND SUBTITLE Ba. CONTRACT NUMBER

Self-Organizing and Autonomous Learning Agents and Systems .
' ' : ©b. GRANT NUMBER ,
F49620-01-1-0020

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) : 5d. PROJECT NUMBER
Wei-Min Shen -

5e. TASK NUMBER

| 6f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) ‘ 8. PERFORMING ORGANIZATION
Department of Polymorphic Robotics Laboratory REPORT NUMBER
University of Southern California
4676 Admiralty Way
Marina del Ray, CA 90292-6695 , +
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 70. SPONSOR/MONITOR'S ACRONYM[S)
Air Force Office of Scientific Research . AFOSR

'} 4015 Wilson Blvd . .
Mail Room 713 : 71. SPONSOR/MONITOR’S REPORT
Arlington, VA 22203 D m - NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Distribution Statement A. Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT , S
During the period of 9/1/2003 through 8/31/2004 we have developed solutions for two critical problems faced by self- . . ;
reconfigurable systems: (1) Autonomous discovery and response to unexpected topology changes; (2) A new distributed functional
language called DH2 for programming of self-reconfigurable systems using hormone-inspired computational methods. These results
are published by Dr Wei-Min Shen and his students Behnam Salemi, Maks Krivokon, and Michael Rubenstein. .

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 77. LIMITATION OF _[18. NUMBER |19a, NAME OF RESPONSIBLE PERSON
a. REPORT |b. ABSTRACT | c. THIS PAGE ABSTRACT g: GES Wei-Min Shen
U U U . uu 19b. TELEPHONE NUMBER (/nclude area code)
. 310-448-8710

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

To USAF, Air Force Office of Scientific Research
Program Manager: Dr. Robert Herklotz

Self-Organizing and Autonomous Learning

Agents and Systems
(Final Report)

Award Number: F49620-01-1-0020
Period of Performance: 12/01/2000 — 11/30/2004

PREPARED BY:

Dr. Wei-Min Shen
Director of Polymorphic Robotics Laboratory
Information Sciences Institute
University of Southern California
4676 Admiralty Way
Marina del Rey, CA 90292-6695
Phone: 310-448-8710
Fax: 310-822-0751
shen@isi.edu

- http//www.isi.edu/robois L

20050309 075

1-67

1
2
3

[--BES = NV -

Table of Contents

ODJECHIVES ..voverereereueecneneecsetienisstsssa s e bbb s se bbb bbbt s 3
Status OF EITOI....c.eeieireeetceenire et ettt sas s s e s b s e st s e sa e e sab s s sas bt s 4
Accomplishments and New Findingscoveiemienieininciciiinss 5
3.1 2000-2001 PEriod......c.coveurueereenercrncrcrsiecsismsseisassessssseresssssenssassssesssessessnssessensssssananssns 5
3.1.1 The Construction of Basic AUtonomous AZEntSccevermeimriainesenesenecanseanins 5
3.12 The Digital Hormone Model (DH-Model) for Self-Organization 11
3.13 Self-Reconfigurable Robots and CONRO Modules.........cocerneiniicnnicnnnnicnnnn 16
3.14 Applications of DH-Model to Metamorphic RObOEScccueuiviicmniniciiiiininn. 18
3.2 2001-2002 PEriOd.covereeerereecreeesreieeeneeseentsseestsassnssesesnesessessssssassassnsssssssnessssstenesennas 22
3.2.1 Adaptive COMMUNICALION ...vovuvviirererersesssstsstssssssss s e .. 24
322 Hormone-Inspired Distributed COntrol.............oceeerieeiieinicnnisininenencccciinen. 26
323 Experimental RESUILScccoviiviiiinimitiiiict et 30
3.3 2002-2003 PErIOd......cccovereererreirnemeeeeenietensscssssisasisssssstesmssesasssssssssassssesesnsassssssassusnssens 32
3.3.1 Distributed Task Negotiation..........ccovvvereiisrininriinnneninensssrssenscsecessnencnns 32
332 Distributed Behavior SElectioncoeccvvevciiiiineintinientenrenees e 40
3.4 2003-2004 Period......covveeeerercrmrcrereeeerericisississerisesessessssssssassesens e etnenas 48
34.1 Autonomous Discovery and Response to Unexpected Topology Changes.......... 48
3.42 DH2: Distributed Functional Language for Self-Reconfigurable Systems 54
Personnel SUPPOTLEcc.covvimiiiiiiiitiriniessss sttt s snens 63
Publications.......c.cccecrueennne eeeeereseseesereeerereatetetete st sae st e Re e bt s Rt b SRS R AR R e s R b e b e e e R e b e s 63
Interactions and TranSItIONS.........cecvreeretnrcerireneriiiiisninestes sttt sasnine 65
New Discoveries, Inventions, or Patent DiSClOSUIESccceeviiiiiiinienenniisincencceeeneens 66
HONOTS AN AWATIAS......ooveueerreerireririretseecsisessinssisisseassaessss s se e s ss e nssssesesssssonsssnsssaaseas 66

2-67

1 Objectives

The main objective for the Self-Organizing and Autonomous Learning Agents (SOALA) project
is to develop synthetic and physical autonomous agents that can learn to perform complex tasks
and self-reconfigure their shape, size and configurations while executing missions in dynamic,
uncertain, and even unforeseen environments. The agents must autonomously learn a model of

its own actions from the environment, and then reconfigure their physical or logical relations to

improve their performance in the environment.

A self-reconfigurable system is typically made from a network of homogeneous or
heterogeneous reconfigurable modules/agents that can autonomously change their physical or
logical connections and rearrange their configurations. Self-reconfiguration provides some great
opportunities for both sciences and applications. In sciences, principles of self-reconfiguration
could help us deepen our understanding how natural systems are evolved and adaptive to their
environment, these understandings would suggest new designs for new engineering systems such
as smart materials or self-assembly systems. In applications, self-reconfiguration provides a
critical capability for solving many real-world problems. In homeland security, self-
reconfiguration will allow unmanned ground or air vehicles to restructure and repair their
organization in unexpected situations. In information systems, it will enable software agents to
adjust their relationship to gather and deliver critical information in a timely fashion. In search-
rescue or inspect-repair applications, self-reconfigurable robots can maneuver in tight spaces that
are hard to reach by humans or conventional robots. In such an application, a self-reconfigurable
robot could become a ball to roll down a slope, slither down between stones as a “snake” to
locate a person or artifact, morph smoothly into a “crab” and climb over rubble, and then
transform a leg into a gripper to grasp and carry objects. A snake robot can be cut into pieces, yet
each piece will continue function for the mission. An octopus robot can lose legs, yet it can
“grow” new legs by rearranging modules from other legs. A self-reconfigurable system can also
disassemble and distribute it self into many small and agile units for certain tasks, and then re-
assemble the small units back into the original single conﬁguration In deepwater operations, a
self-reconﬁgurable robot may become an eel for swimming in open water, change into an
octopus for grasping objects, and then “spread” itself into many small but agile units to monitor

large areas. In space cnv1ronments these robsts cén be applied to self-assembly of large ’

o

. structures in a incremental and eonionmic tashion. All these Scendrios aré not only fot Toboi DUl

also for any system that has a great number of agents and that must dynamically reconfigure the -

system organizations.

Our approaches to self-reconfigurable systems are twofold. On the theoretical side, we attempt to
understand the phenomena of self-reconfiguration in nature, and then develop a general theory
for self-reconfigurable systems. On the engineering side, we design and build novel mechanisms
and software systems for self-reconfigurable robots and agents, and apply these them to complex
tasks in space, deepwater, or any other environment that requires self-reconfigurable capabilities.

3-67

PR A NI AR W

2 Status of Effort

During the period of 12/01/2000 through 8/31/2001, we had built a set of basic autonomous
agents in a general and flexible 3D simulation environment called Morfit
(http://www.3dstate.com/), developed a learning methodology called Object-Centered
Explorative Modeling (OCEM) for learning agents, and formulated a biologically-inspired
approach called “digital hormones” for self-organization among agents. The Morfit 3D
simulation environment allows SOALA agents to see the environment through simulated
cameras and range detectors, to maneuver themselves in the environment, and to manipulate
objects and their spatial locations. The OCEM methodology guides the agents to explore the
environment using their actions and percepts, and facilitates building an environmental model
incrementally until the agents can perform the given task. This methodology suggests a
hierarchical architecture in which environmental models are learnt starting from an individual
object to configurations of objects, and from shape level properties to task level properties. The
model thus learnt is Object-centered, Grounded, Affordance-based, and Multi-layered (OGAM),
and it is implemented as a multi-layered graphs. The evaluation of the learned model is based on
the performance of “objects reconfiguration” task in the environment. In this task, the agents will
use the learned model to recognize objects and familiar views of environment, to navigate
themselves to the goal places, and to manipulate objects to construct simple configurations.

For self-organization issues, we have taken the hormone-based approach. We recognize that
biological systems offer many valuable lessons for achieving the desired features of future agent
systems, and the key enabling technology seems to be the ability of self-organization or self-
reconfiguration. High-performance can be achieved by restructuring structures and better
distributing tasks to resources. Robustness can be obtained by adapting to environments and self-
repairing when single agents are damaged. Scalability can be accomplished by allowing
autonomous agents to self-organize for global performance without pre-imposing any fixed
superstructure. Furthermore, our earlier results in cell ‘pattern formation have shown that
homogeneous embryos cells can self-organize into complex patterns such as feathers and scales
and the morphological differences between different pattems appears to be controlled not by the
presence or absence of particular molecules but by the level and configuration of their
expression, To demonstrate, the. pencrahty of self-crgamzatmp,m robotics agents. we; ?z’l‘l use.
SOALA agents to autonomously reorganize in the process of learning and problem solving.
During the past year, we have begun to formulate the Digital Hormones Model (DH-Model) for
self-organization, and applied this approach to organizational problems in multi-agent systems
such as action coordination and synchromzatnon in self-reconfigurable robots. This report will
give details on these issues.

During the period of 9/1/2001 through 8/31/2002, we have developed solutions for the two basic
problems for the self-reconfigurable robots or systems: adaptive communication in self-
reconfigurable and dynamic networks, and collaboration between the physically coupled
modules to accomplish global effects such as locomotion and reconfiguration. Inspired by the
biological concept of hormone, the Adaptive Communication (AC) protocol enables modules
continuously to discover changes in their local topology, and the Adaptive Distributed Control
(ADC) protocol allows modules to use hormone-like messages in collaborating their actions to
accomplish locomotion and self-reconfiguration. These protocols are implemented and evaluated
in the CONRO self-reconfigurable robot and a Newtonian simulation environment called 3D

4-67

EE bRV o

R AT LT 3

Working Model. The results have shown that the protocols are robust and scaleable when
configurations change dynamically and unexpectedly, and they can support online
reconfiguration, module-level behavior shifting, and locomotion. These solutions can be
generalized and applied to any distributed multiple robots and self-reconfigurable systems in
general.

During the period of 9/1/2002 through 8/31/2003, we have developed solutions for two critical
problems faced by self-reconfigurable systems: (1) Distributed Task Negotiation, that is, how
agents negotiate and select a single critical task to execute when multiple tasks are proposed by
different agents; (2) Distributed Behavior Selection, that is, how agents determine their local
behaviors in order to produce a coherent global behavior. These solutions are parts of a new PhD
dissertation by Behnam Salemi defended in June 2003 under the supervision of Dr. Wei-Min
Shen. We describe the details of these solutions in the next section.

During the period of 9/1/2003 through 8/31/2004, we have developed solutions for two critical
problems faced by self-reconfigurable systems: (1) Autonomous discovery and response to
unexpected topology changes; (2) A new distributed functional language called DH2 for
programming of self-reconfigurable systems using hormone-inspired computational methods.
These results are published by Dr Wei-Min Shen and his students Behnam Salemi, Maks
Krivokon, and Michael Rubenstein. We describe the details of these results in the next section.

3 Accomplishments and New Findings

3.1 2000-2001 Period

During the first year of the project (11/28/00 — 08/31/01), a substantial progress has been made
towards the simulation of autonomous agents with percepts and actions suitable for a simulated
3D environment. We have selected the Award-wining Morfit (http://www.3dstate.com/) as the
simulation environment and developed necessary programs to simulate agents. An interface has
been developed and completed for agents to see and act in their environment. We have identified
the necessary percepts and actions for the agents."Similar to having a camera and range detector,
each agent can see an “image” of edges and distarices to the edges. Each agent passes its action

- 1o-the Murfit environment and our interface “will carry <sit -the faecessary changii-imthe ~ow niwmi

environment as the results of the execution of action. Each agent can perform four types of
continuous actions: move-sideways, move-front-back, turn-body-around, and tilt-camera-
vertically. As the foundation of the OCEM architecture, a graph structure and a learning
algorithm have been developed and tested to build models for spatial and visible properties of
object (we call them “object shape models”). In these models, each node is an internal
representation of a percept and each link is an action. These models and algorithms are
implemented in Microsoft Visual C++ 6.0 and tested on multi block environments. The programs
are integrated with the 3D simulation environment, and the result is a synthetic agent that takes
the visual data from the environment, builds object models in the environment, and uses the
model to perform simple navigational tasks around the objects based on their shape properties.
We elaborate each of the tasks in the following sections.

3.1.1 The Construction of Basic Autonomous Agents

This part of the project addresses the construction of basic autonomous agents that “live” in the
3D simulation environment. The Morfit application provides a 3D simulation of visual

5-67

environment in which the agent learns and performs complex tasks. To implement the perception
of agents, we have build a simulated camera program that takes the list of all polygons in the
Morfit environment and converts them into a list of 2D edges that are “visible” in the camera
image perceived by the agent. Each 2D edge is specified by a set of associated parameters -
color, distance, spatial locations on the camera screen, and spatial points intersected by other
edges.

Figure 1 illustrates the 3D environment and percepts received by an autonomous agent. The top-

left window shows a top view of the entire environment in which there are three objects and one

agent (the small black dot with yellow front). The top-right window is a rendered view (a

bitmap) provided by the Morfit that is accessible to agent’s camera. The lower-right window

presents a list of edges that are received by the agent on its camera. These edges constitute the

perceptual inputs to the agents. They are similar to the edges detectable by a vision program such

as an edge-detection program. The bottom-left window is a control panel for directing agent’s
actions for interaction with the human users.

The Morfit requires additional functions in order to get the desired information from the
environment and manipulate objects in the environment. Some significant function requirements
are listed below.

o Camera Function: The percepts of an agent are the visible information provided by its
camera, yet Morfit’s functions return all the polygons available in the environment. We
need additional functions that can extract the former from the latter each time the agent
moves in the environment.

e 3D to 2D mapping: The visual polygons make up a 3D world. The 2D edges received as
percepts are the result of projection of the 3D polygons. Due to occlusion by the objects,
not all edges, in front of the camera, are received as part of a percept. We need additional
functions that map the 3D polygons to 2D edges, and find the visible parts of the 2D
edges.

e User Interaction: In order for the user to interact with the interface to test the agent
performance, we need a GUI to specify and control agents> location and movement. For

. example. the usér should be abfe to say. that the .agent start at a particular locationand . =~

move in a direction for some steps The visual images seen by the robot’s camera will be
updated each time a movement is executed.

6-67

Figure 1: A view of Morfit 3D world and a percelved image of edges by the agent

In order to separate the polygons into those that are in front of the camera and those that are

behind the camera, we need an efficient algorithm. We have implemented a Binary Search

Partition (BSP) tree generation and BSP tree traversal algorithms. The BSP tree organizes the

polygons in the world as a tree where the relationship between two successive nodes is either “in

front of” or “behind”. Using these relatlonshlps the BSP traversal algorlthm can ﬁnd the list of
polygons that are in front of a camera. ~.

LW AR

" The list of the 3D’ polygons gencrated by BSP tree search, is then convcrtea into 2D edges We
implemented a graph algorithm that detects the hidden edges and eliminates them. The input to
this algorithm is a list of 3D points that are in front of the camera. The output is a list of 2D
points that are imprinted on the screen of a camer

In order to allow the user to interact with the agent and the environment, we have designed a
GUL. Figure 1 also illustrates a screen shot of the GUI (bottom left corner). The user can select a
starting location for the agent, and can direct the agent’s action by running a complete
simulation, or proceeding step by step. The user can also ask the agent to behave as a reflexive
agent, by selecting actions arbitrarily, or allow a learning algorithm to guide it.

Shape Model Building for Single Objects

The autonomous agent learns to perform a complex task in a new environment by building an
OGAM model for predicting the results of its actions. The model is built incrementally in
abstraction. In this first phase of the project, we developed an algorithm that builds the shape
model of single objects from the percepts and the actions. The shape model of an object allows

7-67

PR Y

B R X F:

SEAPRET FE R

the agent to perform several tasks like navigation around the object, prediction about the
consequences of its navigational actions, and the recognition of the object.

There are a number of issues in building the object shape model in a continuous environment:

e Infinite Exploration Space: In order to build a model of the object that can help the agent
navigate from any point to any other point in the environment, the agent may need to
explore infinite points. This is because no two points provide same relationship
information between the agent and the object. This is especially difficult for an
autonomous agent does not have a model that can relate two points, such as a global
coordinate system.

e Infinite action space: The space of actions from which the agent can select is infinite.
The agent we have designed can perform four kinds of continuous actions: {move-
sideways, move-forward-backward, turn-horizontally, tilt-camera-vertically}, and
emulate all possible parameters for these actions will be impossible.

e Large Relationship Space: The number of relationships among the objects and an agent
is very large. For example, the distances between the agent and an object can vary
widely, so are the perspectives between the agent and the object.

Our methodology has two major steps in building the shape model for navigation about the
object. The first step is to build a “core” model within a réstricted relationship space. That is, the
distance is kept within a limit while changing the rest of the relationships. The objective of this
core model building is for the agent to acquire the maximal information of the edge features of
the object, with a minimal variation of relationship. The second step is to generalize the core
model over the entire space of relationships. In this report, we describe the first step only.

The agent needs to navigate in the relationship space with the object. The relationship space of
an agent with respect to an object is defined by the edges of the object that are visible to the
agent, their perspectives, and the distance between the agent and the edges. Our approach is
based on a significant insight that a complete shape model of an object for the entire relationship
space can be generated from a more speciﬁé: model that covers the complete feature space of the
object but within a narrow relatignship- space, by generalizing over distance and perspective

- relationships. Core mudel is such a specific-modc! where the distance selaticnship - betweenhos e aminio

agent and the object is kept within a limit while spanning the feature space rapidly.
Our algorithm for core model building has the following novel features.

» Affordance-based representations: The agent should be able to select actions based on
the most recent percept it has received. The action selection should be based on a task
such as building a core model for a restricted relationship space. In order to link the
percepts, with 2D edges, and the actions, which are expressed as number of pulses sent to
the effectors of the agent, the percepts are converted into a parametric form where the
action parameters are used to represent the 2D edges. We use prototypes that generate
edges as functions relating the parameters of the actions. These prototypes are themselves
represented in a form that can be learnt empirically by the agent.

» Prototypes for generating grounded representations: For a model state, the agent should
be able to assess the extent of the physical or simulated world covered. This mapping
enables the agent to synchronize its traversal within its model space with the physical

8-67

movement. It also enables the agent to match the physical data with parts of its model
states. In order to address these issues, the agent starts with a set of prototypes one for
each type of action. These prototypes represent each action parameter (such as move
sideways) as a function of the distance between the agent and the real feature in the
environment. The distance is measured in terms of the action parameter units. For
example, move_sideways = 2*d*cos(90-(¢ /2)), where ¢ is the angle of the camera, d is
the distance measured in terms of pulses given to the agent’s motor. It can be easily
shown how the distance can be mapped onto the action parameters. Each edge feature in
model stat is generated by instantiating a prototype. Thus an edge feature can be used to
find the effects of executing an action as changes in that edge feature.

Measuring the maximal change in feature space (E.): The purpose of the core model
building is to achieve maximal change in the feature space by minimal actions. We use a
parameter, Model Change Estimate E.r, to calculate the maximal change possible by each
action. E is a sum of several changes possible in the current model state the agent has
due to the execution of an action. E.n, is given as the sum of (1) the changes in the lengths
of the edges, (2) the positional changes of the edges, (3) the orientation changes of the

edges, and (4) the amount of disappearance of an edge from view field. The agent selects ‘

the action that has the largest E.p, value. The significance of this step is that it maps large
number actions possible at each step to a small set of discrete actions.

Continuity Condition: In core model building, the agent is not trying to build a geometric
model of the object. Instead, it is building a model that allows predictions about the
properties of objects as a consequence of executing its navigational actions. Any model
built by an agent should allow some measure of progression towards o away from a goal
state. A model constructed by a randomly moving agent cannot provide this
measurement. We use an'insight that the models of the object features allow such a
measurement. In order to build this measurement space, the agent needs to scan the object
by maintaining continuity over the edge features. This method is far superior to the one
that maintains an abstract parameter for measurement as the validity of the continuity of
this parameter is not known. The continuity condition is incorporated into Ecm

calculation. That is, the agent -will not consider an action as a potcntlal candidate for

execution’ if it does not allow the poifii fEatures from the dmcm “nddei state to b
incorporated into the next state.

Perspective Changes: As the agent explores for the data in a 3D world, it needs to change
its tactics to get useful data, especially to satisfy the continuity condition. This can
happen when it reaches the corner of a block. Then the agent has to move in order to
access the connecting surface features. The agent needs to recognize such situations and
then act accordingly. Our approach is to recognize such situations by significant changes
in the perspectives of the edges in the current model state. Our algorithm calculates such
changes and then modifies Ecm to select actions that would allow it to explore a new face
of the object.

Terminating the core model buzldzng The agent needs to address the question of how to
terminate the model building. Since the agent uses the grounded and Affordance-based
representations, this is not a serious problem. The agent maintains the cumulative action
parameter values in its model history. These parameters exhibit classical geometric
properties. For example, turning right will eventually make the agent end up in the same

9-67

e 3w o v

direction. The agent imposes a set of terminating conditions on the history of model
states it has been developing.

Figure 2 illustrates the overall algorithm for the core model building.

0.0 pin € initial percept

1.0 m;, € generate_model_state (pin, prototypes, NULL)
2.0 history € add_to_history(mi,) '

3.0 action € select_action(my,, action_types, prototypes)
4.0 percept € execute_action(action)

5.0 model_state € generate_model_state(percept, prototypes, history)
6.0 history € add_to_history(model_state)

7.0 condition € estimate_termination_condition(history)
7.1 if (condition == true)
7.1.1 Exit

7.2 Else, go to step 3.0

Figure 2. The overall algorithm for core model building

Integration

We have integrated the core model building with the graphics interface so that the agent gets a
list of 2D edges as percepts from the Morfit environment and can pass an action to be executed
in the Morfit environment. Figure 3 illustrates how this integration is made.

Morfit 3D l—— Graphics

. ‘Xﬁual - | ; ~ ~{«_Interface
L Environment | o ‘

¢

ModelBuilding

Core Model Building

Autonomous Learning Agent

Figure 3. Integrating Core model building with the graphics interface

Evaluation of Object Shape Model

To evaluate the performance of the autonomous agents, we plan to give the agent certain
recognition and navigation tasks once it has learned the core model. One scenario is to present a
image of an object to the agent and the agent is required to navigate to a location in the

10-67

B R I

[REE S PP PIT IR TN

environment where this image can be received by the camera. To accomplish this task, the
learning agent must use the learned shape model to guide its navigation or further exploration of
the environment. The agent must first compare the goal image to all the model states that have
been learned, and determine if this goal image is contained in the core model (i.e., a place that
has been visited before). If so, the agent has to plan a sequence of actions to navigate itself to the
goal place. Otherwise, the agent must find the most similar place in the model, navigate there,
and perform more exploration in search for the goal image. To accomplish such a task, the agent
should first be able to generalize between most similar state and the goal image. Since the
generalized model has not yet been evaluated by the agent, the model can only suggest a
navigational path to the goal image place with certain amount of uncertainty. Further, the model
states that may be encountered by the agent on its way to the goal image pace may not be exactly
same as the once suggested by the generalized model, the generalized model states can match
with those encountered with some amount uncertainty. We have been trying to incorporate some
probability measures to address these two problems.

3.1.2 The Digital Hormone Model (DH-Model) for Self-Organization

Based on our previous research in cell development and metamorphic robots, we developed a
biologically inspired computational model for self-organization. In this model, pattern formation .
of multiple elements is based on the behavior rules of single elements and mediated through
hormone-like signals (digital hormones). It is a bottom-up patterning model because various
configurations can be produced based on the behavioral response of individual elements to the
local information in the environment. This is in contrast to the top-down approaches where
generation of pattern is considered as a readout of a global coordinate system, or key-lock like
chemo-affinity (Meyer 1998). The top-down models indeed work in some biological situation. In
case such as Drosophila segmentation formation, it was found to be based on zip code like
specific DNA sequence in the enhancer regions (Struhl 1992). However, these “blueprint”
models have an obvious problem in terms of information load. As animals evolve and become
more and more complex, the enormous information required will soon over-burden the system.
There must be other ways in biology that are used to build complexity and diversity. The fact
that the size and spacing of leopard spots and zebra stripes are consistent (e.g., similar size,
spacing) but non-identical implies that the pattering process follow rules, not a blueprint. Our

.. mode! ic vnique in that it is-Sased on wules, mot coordinates. As.zxesnlt, inch lese information. o vt ne o

is required, and it is flexible and can accommodate environmental changes and re-configurate
quickly. This is because each element can make its own response to the ever-changing local
information, not have to search for preset instructions. These rules are part of the “bio-
informatics” we need to learn from Nature.

The Digital Hormone Model. Our self-organization model (see Figure 4 and Table 2) takes
place in a space of grids. There are two basic types of elements: a set of cells and digital
hormones. There is a global clock that set the patterning process in motion. The space can be of
fixed size or expandable. A certain number of cells is added to the system initially, but cells
numbers may increase or decrease during the process. We assume that each cell occupies one
grid, and each grid can accommodate only one cell but multiple digital hormones. Each cell is an
autonomous system that has certain properties. One major property is that it can secret digital
hormones and has receptors to digital hormones. Digital hormones are typed elements that can
be released from cells into the grids or captured by receptors of cells from the grids. Each type of
digital hormone has its own density threshold and diffusion function. Digital hormones are

11-67

propagated in the space from the higher density grids to the lower density grids with the ratio
specified by the diffusion function. The propagation stops when there is no gird with density
higher than the threshold. Within a grid, the number of typed digital hormones that will be bound
to the receptors of the occupying cell equals the number of the same type receptors in the cell.
The receptors have different receptor types and can bind digital hormones with matching types.
Receptors can be “used up” when bound to digital hormones, and can be created or deleted by
cell’s actions. Thus the number and types of receptors in a cell may vary in a life time.

Self Organizing Models
with Digital Hormones
| e

Competent, EOmogeneous state

Intrinsic random fluctuation
1. Properties 3. Activator/inhibitor

4_ Strength of
of celis Digital Hom:oges
2. Physicochemical
© . properties of
" exiraceliular matn

<

4. Dinlension of field

Figure 4: Self-Organizing Models with Digital Hormones

12-67

3 *‘ T AT B ST A TR R e BT e i AT M

The variables of a cell reflect the state of cell property, which include adhesion information,
migration, differentiation (converted to different types of cells), and so on. An adhesion action
causes the cell to be connected or disconnected from a neighboring cell. The adhesion level
between two neighboring cells can be attractive (with positive adhesion value, further defined in
Figure 5), repulsive (with negative adhesion value) or neutral (zero value). Digital hormones can
alter the strength of connection, and are classified as activators or inhibitors depending on its
ability to increase or decrease cell connection. A migration action causes the acting cell to move
one grid in a specified direction. The migration can be random or directed, and a group of
connected cells can move synchronously. If the target grid is already occupied, this action has no
effects. A secretion action causes the cell to release certain number and types of digital
hormones. A modification action changes the number and types of receptors in the cell. A
proliferation action creates new cells, which may be naive cells or copies of certain acting cells.
A differentiation action makes the cell change values for the specified variables such as shape or
size. A death action terminates the life of the cell and remove it from the occupying grid.

Table 2: Digital Hormones for Biological Pattern Formation and Robot Reconfiguration

DH-Model for Self-Organization Feather pattern formation Metamorphic robots
SPACE: : Skin on embryonic chicken Terrain

Expandable evenly or unevenly vs. Fixed

TIME: A global clock ’ Time in development Distributed clocks
CELLS Biological cells Robotic cells

of Cells: Increase or decrease Proliferation, Cell death Addition, Destruction

Cell Connection Index (Ci): Cell adhesion Connection between
0: neutral; 2.5: weak connectivity e.g., NCAM cell adhesion robot modules
5: can connect; 7.5: connected reversibly
10: connected irreversibly
Negative value: repulsive, defined similarly .

Cell Migration Robot movement
Random or directed, Cell migration Configured robot
Aggregate or cluster migration Cell group migration __| movement

Digital Hormones . . Secreted extracellular signaling | Infrared

Activator (A) for connection Molecules, e.g., A: FGF; Radiowave
inhibitor (J) for connectien , |: BMP: M snroody, eoagin 4 e s v et
Modifier M) sl - Sl o .

Cell State Number of receptors on cells Sensitivity to receive
Activator receptor (AR) Rate of secretion signals, Strength of
Inhibitor receptor (IR) emitted singals
Productivity of Aand |
Differentiation (converted to other cell types) .

RULES of digital hormone behavior Turing model To be applied
Spread out radially from cells Diffusion rate
Strength decreases with distance Property of extracellular matrix
A and | travels with different velocity

POSSIBLE CONFIGURATIONS Feather patterns, leopard spots, | Tetrapod, snake,
Aggregates, Cluster, Stripes, and others Zebra stripes Sea urchin, etc.

13-67

B e

'~ computer-simulation model, and test and modify this"thoder. Ui tirdifEnige s tv" “desigi-eel

3 Possible
Elements Super-cell Assembly Configurations
An unstable aggregate . . .
Cluster configuration

X
A space with 60 cells

Acell

An equilibrating cluster Stripe configuration

0 25 5 7510
Celis with different connection indices A stabilized cluster - Robotic configuration

Figure 5: An example of self-organization with digital hormones

The entire computational model works as follows. Once the clock starts, the whole model will
perform the following events repeatedly:

1. All cells will bound their receptors to the existing digital hormones in their grids;
2. All cells will select actions according to their behavior rules;
3. All cells will execute their actions;

4. All digital hormones in the space will be propagated by their diffusion functions.

The selection and triggering of these actions are governed by the behavior rules that map the
conditions of the cell to the actions. For example, one rule might say “if there are more than n
bound receptors of type x, then increase the receptors of type y by m.” To illustrate how this
model can be used to experiment self-organization, consider a simple example of pattern
formation where cells are checker pieces of black, gray, or white, and the space of grids is the
checker board (Fig.5; Empty space in light yellow). Suppose that the pieces can change their
colors in accordance to its adhesive state (Fig.5 left lower panel) and can self-organize into
certain configurations (Fi ig.5, nght column) from a homogeneous initial state. We will set up-a

b

digital hormones and their receptors, and to identify and set behavior rules for the cells so that
such self-organization can be accomplished. We can experiment by varying these parameters and
observe their effects on the self-organization process. For example, according to Turing model
(Turing 1952), a random fluctuation in a homogeneous system can be stochastically amplified
and lead to periodic pattern formation, with dots or stripes, of different size and spacing. In our
computer simulation, we can set a naive state. For example, we can assign connection index 5 to
all cells, and the same production rate of digital hormones. We can then allow the state of cell
connection fluctuate with + 1, or even + 0.1 range, then set the clock and see what stable
configuration it will develop (Fig.5, middle column). Stable configuration is defined as the
maintenance of a configuration and is the result of competition and equilibrium. The computer
simulation will also allow us change other variables such as level of digital hormones, diffusion
rate of digital hormones, ratio of activators versus inhibitors, number of receptors on cells,
changes of connection index by digital hormones, etc. one at a time. We can analyze the change
of configurations, cluster versus size, the size of clusters and spacing, radially symmetry versus

14-67

3 Possible
Elements Super-cell Assembly Configurations

0 LI ,
Py o o
v H
] An unstable aggregate)
+ Ay o o
" Cluster configuration

X
A space with 60 cells

A cell

An equilibrating cluster

Stripe configuration

o

3

mysy § 8

02557510 il
Cells with different connection indices A stabl

A cell with digi
Activator

cluster Robotic configuration

Figure 5: An example of self-organization with digital hormones

The entire computational model works as follows. Once the clock starts, the whole model will
perform the following events repeatedly: '

1. All cells will bound their receptors to the existing digital hormones in their grids;
2. All cells will select actions according to their behavior rules;
3. All cells will execute their actions;

4. All digital hormones in the space will be propagated by their diffusion functions.

The selection and triggering of these actions are governed by the behavior rules that map the
conditions of the cell to the actions. For example, one rule might say “if there are more than »
bound receptors of type x, then increase the receptors of type y by m.” To illustrate how this
model can be used to experiment self-organization, consider a simple example of pattern
formation where cells are checker pieces of black, gray, or white, and the space of grids is the
checker board (Fig.5; Empty space in light yellow). Suppose that the pieces can change their
colors in accordance to its adhesive state (Fig.5 left lower panel) and can self-organize into
certain conifigurations (Fig.5, right column) from a homogeneous initial state. We will set up a

* - comptter simulation modei, and test and modify ‘nis model. Gur Chaileiige is v design™ceils,

digital hormones and their receptors, and to identify and set behavior rules for the cells so that
such self-organization can be accomplished. We can experiment by varying these parameters and
observe their effects on the self-organization process. For example, according to Turing model
(Turing 1952), a random fluctuation in a homogeneous system can be stochastically amplified
and lead to periodic pattern formation, with dots or stripes, of different size and spacing. In our
computer simulation, we can set a naive state. For example, we can assign connection index 5 to
all cells, and the same production rate of digital hormones. We can then allow the state of cell
connection fluctuate with + 1, or even + 0.1 range, then set the clock and see what stable
configuration it will develop (Fig.5, middle column). Stable configuration is defined as the
maintenance of a configuration and is the result of competition and equilibrium. The computer
simulation will also allow us change other variables such as level of digital hormones, diffusion
rate of digital hormones, ratio of activators versus inhibitors, number of receptors on cells,
changes of connection index by digital hormones, etc. one at a time. We can analyze the change
of configurations, cluster versus size, the size of clusters and spacing, radially symmetry versus

14-67

o

anterior-posterior asymmetry, etc. New elements and rules will be added or modified as we
experiment. In this grant, we will first focus on the interplay among cell adhesion, migration and
digital hormones, and leave other parameters as constants. After we can master the prototype
model, we could modulate others variable to build or simulate more complex patterns and
phenomena. This include making "space" expand evenly or unevenly, adding new cells randomly
in space or from a localized input, or defining differentiation so that multiple types of cells co-
exist and interact (such as the differentiation of stem cells into tissues, or evolution of single
cellular organism into multi-cellular organisms).

The Unique Features of the Digital Hormone Model. The digital hormone model proposed
here has many advantages over other models for self-organization and self-reconfiguration
because it is distributed, scalable, robust, adaptive, and easy to develop. The model does not
require a fixed control center. In fact, any cell can play the leader role for a particular
cooperation. This advantage comes from the fact that no individual cell is required to have
addresses or identifiers, and no single special cells are required for pattern formation.
Communication is established by the releases and receptions of digital hormones, and the
receiver cells can autonomously decide their actions based on their local information and rules.
No individual needs to know the global configuration of the system. The model is scalable
because the functions of a cell in the configuration (or in a organization) can be modified in a
completely autonomous manner, regardless of the existence and states of other cells in the
organization. This enables every cell of the organization to have autonomy in sending and
receiving messages, and accepts changes of organization in a very flexible manner. Since the
behaviors of an individual cell are determined only by its local information (such as how many
neighbors it has and what type of neighbors they are) and its internal state and knowledge, a part
of an organization can change without affecting the rest of the organization. Similarly, in order to
add new cells into an existing configuration, all it requires is to place them into the living space
(such as done by the proliferation action). No individual cell is required to know who or how
many existing members are and what these members can do. Such will be a highly desirable
feature for the ever expanding information systems. The model is robust for self-reconfigurable
cooperative organizations. Since digital hormones do not require any centralized control,
malfunctions of individual cell will not cause collapse of the entire organization and local
failures will not have catastrophe effects on givbal pefforitiantce: Furitieriiore, if tie*ofganization
is capable of reconfiguration, then damaged cells can be detected and discarded without affecting
the performance of the whole organization. The model can support organizational adaptation.
This is because the linkages between members are flexible, changeable, and controllable; they
can dynamically form new configurations to meet the demands of applications or changes of the
environment. Finally, this model suggests a hormone-oriented and cell-oriented programming
paradigm for distributed software development. Since cell-based programs are modularized and
can be developed in parallel, they may be easier to develop, more reliable, predictable,
modifiable, and adaptable than most conventional programming paradigms such as the object-
oriented programming. :

The DH-Model has many similarities to but is different from the traditional cellular automata
model. They both use cells, grids, and rules, but the DH-Model has complex hormone
propagations and cells can connect to each other and move as aggregates. Given the evidence
that John Conway’s two simple rules for the Life game can produce complex behaviors, the DH-
Model is indeed capable of simulating sophisticated behaviors.

15-67

The DH-Model is also different from amorphous computing (Abelson 1999; Nagpal 1999),
which is a system of irregularly placed asynchronous, locally interacting computing elements
coordinated by diffusion-like messages and behave by rules and state markers. However,
amorphous computing is not a study of self-organization but an engineered system for elements
to organize and behave in a priori intend. Furthermore, their coordinate system assumes that
positional information is the key for pattern formation (Wolpert 1969), while our DH-Model
emphasizes configuration information.

3.1.3 Self-Reconfigurable Robots and CONRO Modules

Among all computational studies of self-organization, modular self-reconfigurable robots are
perhaps the only one that implements and demonstrates self-organization on physical devices.
These robots are constructed from a set of autonomous robot cellular modules that can self-
reconfigure into structures of different shape, size, and configuration in order to accomplish
complex task in dynamic and uncertain environments. These robots are highly desirable for tasks
such as fire fighting, search/rescue after earthquake, and battlefield reconnaissance, where robots
would encounter unexpected situations that are difficult for fixed-shape robots to deal with. For
example, to maneuver through difficult terrain, a metamorphic robot may have to transform itself
into a snake to pass through a narrow passage, grow legs to climb over obstacles, or become a
ball to roll down a slope. Similarly, to enter a room through a closed door, a metamorphic robot
may disassemble itself into a set of smaller units, crawl under the door, and then reassemble
itself in the room.

Research in self-reconfigurable robot started in 80’s when Fukuda and Kawauchi (Fukuda 1990)
proposed a cellular robotic system to coordinate a set of specialized modules with a distributed
control method. Yim (Yim 1994) has designed a set of mechanical modules for self-
reconfiguration and proposed the mechanism of gait control tables and open-loop
synchronization. Chen (Chen 1994) has studied the theory and applications of modular
reconfigurable robots and discussed the concepts of connecting mechanisms. Murata et al.
(Murata 1994) and Yoshida et al. (Yoshida 1997; Yoshida 1998) designed and implemented
several distributed control methods for 2D and 3D self-assembly and locomotion. Paredis and
Khosla (Paredis 1995) proposed modular components for building fault-tolerant multipurpose
robots. Neville and Sanderson (Neville 1996) proposed a module for the dynamic construction of
complex strctures, . (Chii-ikjiéﬁ' 1994; Pamecha 1997) has studied.the metric_properties of
reconfigurable robots. (Kotay 1998) designed and built a set of robot molecules. Lee and
Sanderson (Lee 1999) have proposed a distributed control method for Terobot modular robots..
Fujita, et. al. (Fujita 1998) describe a robot dog system that can be manually assembled into
different configurations. Bojinov et al. (Bojinov 2000) proposes a multi-agent approach to
control metamorphic robots for object manipulation and reaction to external forces, but the
“scent” concept used in their system has only limited capabilities for module cooperation and
requires global synchronous updates. Kotay and Rus (Kotay 2000) have proposed a set of rule-
based finite state automata. Recently, two workshops (Rus 2000; Shen 2001) and a special issue
of Autonomous Robots journal has devoted to this exciting topic.

In the past three years, we have built a new generation of self-reconfigurable robots called
CONRO. The CONRO robot consists of a set of modular modules that can connect/disconnect to
each other to form different complex structures for different tasks. Each CONRO module has a
size of 1.0 inch? cross-section and 4.0 inch long and is equipped with a micro-controller, two
servo motors, two batteries, four connectors for joining with other modules, and four pairs of
infrared emitter/sensor for communication and docking guidance. In comparison of other

16-67

existing metamorphic robots, the unique propertles of CONRO robot modules are that they are
autonomous and completely self-sufficient with own power, computational resources, and
sensory and actuating devices, and they have the automatic docking capability to connect and
disconnect with each other to form various shapes and size.

Figure 6: Examples of CONRO Self-Reconfigurable Robots

The four pictures in Figure 6 show a CONRO module in hand, an 8-module snake, two 9-
module six-legged insects, and the detailed schema of a single CONRO module, respectively.
For more information and movies of CONRO, please visit the web site http://www.isi.edu/conro
and see (Castano 2000; Castano 2000; Shen 2000; Shen 2000; Shen 2000; Salemi 2001; Shen
2001). At the present time, 20 CONRO modules have been built. These modules can be
connected to form various configurations including snake, caterpillar, quadruped, and hexapod.
These configurations are capable of performing basic locomotion and self-reconfigurations.

Shown in the detailed schema of CONRO module, the four connectors are located at either end
of each module. At one end, called the module’s back, is a female connector, consisting of two
holes for accepting docking pins of other modules. At the other end, three male connectors, each
has two docking pins, are located on three sides of the module, called front, lefi, and right. The
female connector has an SMA-triggered locking/releasing mechanism. Each module has two
degrees of freedom: pitch and yaw. When two or more modules connect to form a structure, they
can accomplish many different types of locomotion. For example, a body of six legs can perform
hexapod gaits, while a chain of modules can mimic a snake or a caterpillar motion. CONRO
modules communicate with one another using IR transmitters and receivers located at the
- conrectors. When a module is connected to or near another module via a connector, the two pairs

of IR transmitters/receivers at the_ corresponding_connectors will be aligned to form a bi- -
directional communication link. Since each module has four connectors each module can have ’

up to four communication links.

Although metamorphic robots have a wide range of applications, the control of such robots
however, is not a trivial task. The difficulties stem from the facts that all locomotion, perception,
and decision making must be distributed among a network of modules, that this network has a
dynamic topology, that each individual module has only limited resources, and that the
coordination between modules is highly complex and diverse. For example, communication is
difficult because such robots can autonomously and possible frequently change the connections
among components. These changes alter the communication channels between modules and
modify the topology of the underlying communication network. Another difficult problem is
cooperation. Individual modules can only access their neighbors’ local information yet all
modules must function according to their roles and locations in the current configuration. We
cannot assume any single module to be the fixed “brain” of the system because damages to the
brain module will paralyze the entire population. Furthermore, actions of individual modules are
typically weak in comparison with the entire robot body, and no single module can be assumed

17-67

Ay

e e

to be powerful enough to manipulate all other modules in the system. Thus the weak and local
actions must be coordinated to produce strong and precise global effects. Finally, without a
global clock for all modules, how actions in many different modules can be synchronized is an
interesting and challenging question.

3.1.4 Applications of DH-Model to Metamorphic Robots

The DH-Model can be readily applied to the control of metamorphic robots. Consider a set of
metamorphic robots that are made of robotic cells (r-cells) that can connect and disconnect with
each other to form different configurations or organizations. We assume such r-cells have the
similar actions as those proposed in the DH-Model but live in a free space without grids. All r-
cells have the same internal structure as shown in Figure 7, where software and hardware are
constructed to simulate the biological receptors and the relevant part of decision-makings
process. A local engine with a set of receptors can examine the incoming signals received from
its active links, and decides if any local actions should be taken. Such actions include activating
local sensors and actuators, modifying local receptors or programs, generating new digital
hormones, or terminating digital hormones. Just as a biological cell, a r-cell’s decisions and
actions depend only on the received hormones, its receptors, and its local information and
knowledge.

Local Engine
and receptors

>

Hormones to the
output links

Hormones from
the input links

Sensors & Local state
Actuators

Figure 7: Internal structure of a r-cell

R YL AT L 3 A NATR M e e

@ (b)

O © &
Batad
CRCRE

©

0| [evoe]| g

Figure 8: Examples of r-cell Organization

We represent a configuration of r-cells as a graph with nodes as r-cells and edges as established
connections. For example, a single CONRO-like r-cell with four potential connectors can be
represented as the graph shown Figure 8(a) where all four connectors are open. A graph for a
snake-like chain of four r-cells can be represented as a graph in Figure 8(b), a 6-legged insect in
Figure 8(c), and a system with two separate robots with a remote communication link (dashed

18-67

ERPROCAT SR

line) in Figure 8(d). In general, an organization of r-cells can be an arbitrary graph with r-cells
having different number of connections.

The digital hormones can be used to accomplish the communication, collaboration, and
synchronization among r-cells. For simplicity, we only consider a special case of DH-Model
where hormones are mainly travel in the connections between r-cells and the diffusions through
free space are negligible. From a computational point of view, a digital hormone in this case is a
message propagating in the r-cell network and it has three important properties: (1) a hormone
has no destination; (2) a hormone has a lifetime; and (3) a hormone contains codes that can
trigger different actions at different receiving r-cells.

To illustrate the application of DH-Model in metamorphic robots, consider an example how
digital hormones are used in self-reconfiguration. Figure 9 illustrates a situation where a
metamorphic robot with seven r-cells changes from a quadruped (a four legged structure) to a
snake. In this figure, a r-cell is represented as a line segment with two ends: a diamond-shaped
end (the back link) and a circle-shaped end (this end has three possible links: the front, left and
right). The robot must change from a legged configuration (at the top-left of the figure) into a
snake (at the bottom of the figure). To do so, this robot must perform the “leg-tail assimilating”
action four times. To assimilate a leg into the tail, the robot first connects its tail to the foot of a
leg and then disconnects the leg from the body (shown at the upper part of the figure). Just as in
any r-cell organization, each r-cell in the robot determines its role based on its local state
information including its own neighboring connections.

i_ﬁ%_“_‘m m’I““/-

The final snake shape:
00— 06—06—00—00—006—00 0

Figure 9: Reconfiguration from Quadruped to Snake

-.| Digital hormones o AN, e s e 1

LTS Start the reconfiguration

RCT,, RCT,, RCT;, RCT, Legs are activated

TAR, RCT,, RCT;, RCT, The tail inhabits RCT, and leg! determines RCT,
ALT, RCT,, RCT;, RCT, The tail assimilates legl and then accepts new RCT
TAR, RCT,, RCT, The tail inhabits RCT, and leg3 determines RCT;
ALT, RCT,, RCT, The tail assimilates leg3 and then accepts new RCT
TAR,RCT, The tail inhabits RCT, and leg4 determines RCT,
ALT,RCT, The tail assimilates leg4 and then accepts new RCT
TAR The tail inhabits RCT, and leg2 determines RCT,
ALT The tail assimilates leg2 and then accepts new RCT
(%} End the reconfiguration

Using digital hormones, the entire reconfiguration procedure starts when one (and any one) of
the r-cells generates a reconfiguration digital hormone LTS (Legs To Snake). This LTS digital
hormone is floating to all r-cells, but each r-cell’s reaction to this LTS digital hormone will be
different and that depends on the receiver’s role in the current configuration. For this particular

19-67

B e T N

digital hormone, no r-cell will react except the foot r-cells, which will be triggered to generate a
new digital hormone RCT (Requesting to Connect to Tail). Since there are four legs at this point,
four RCT digital hormones will be floating in the system. Each RCT carries a unique signature
for its sender. No r-cell will react to a RCT digital hormone except the tail r-cell. Seeing a RCT
digital hormone, the tail model will do two things: acknowledge the RCT by sending out a new
TAR (Tail Accept Request) digital hormone with the signature received in the RCT, and inhibit
its receptor for accepting any other RCTs. The new TAR digital hormone will reach all r-cells,
but only the leg r-cell that initiated the acknowledged RCT will react. It first terminates its
generation of RCT, and then generates a new digital hormone ALT (Assimilating a Leg to the
Tail) and starts the required reconfiguration action (see (Shen 2000) (Shen 2001) for the details
of this compound action). When seeing an ALT digital hormone, the tail r-cell will terminate the
TAR digital hormone and starts actions to assimilate the leg. After the action is done, the tail r-
cell will reactivate its receptor for RCT digital hormones, and another leg assimilation will be
performed. This procedure will be repeated until all legs are assimilated.

As we can see from this example, applying DH-Model to metamorphic robot control results in a
number of advantages. First, the method works in many different configurations. In our current
example, it will work independent of the number of legs in the system and how long the tail is.
Second, the digital hormones are naturally organized in hierarchical structures. For example, a
single LTS can trigger a level of activity managed by the digital hormones RCT, TAR, and ALT.
One ALT will trigger another level of activity for assimilating a leg using another set of digital
hormones (we did not show the details of this level in this example). Third, digital hormones
allow global actions to be totally distributed to individual members. All r-cells have total
autonomy in deciding their local actions, generating or terminating hormones. This allows on-
line reconfiguration where a robot can maintain its function when merging or disconnecting with
other robots. Fourth, this approach is de-centralized and any r-cell in the configuration can serve
as the trigger of the reconfiguration. it is more efficient than centralized approaches because one
single digital hormone is sufficient to trigger and coordinate all actions of all r-cells.

Digital Hormones for Dynamic Communication. All communication among r-cells is
accomplished by digital hormone propagation. We say that a r-cell propagates a digital hormone
if it either generates a new digital hormone or it receives/sends an existing hormone: Iix the first
i+ case, the r-cell will send the new digital Hormiofie 16 gl detive tinks: Trihe second case, the TeGire e
marks the receiving link arid sends the digital hormone to the rest of its active links. :
Propagation is the only way that r-cells communicate with each other. Different from regular
message-passing protocols, a r-cell cannot arbitrarily select a subset of active links to send digital
hormones. It must either propagate a digital hormone or completely ignore it. This property is
similar to the communication protocols in artificial neural networks, but r-cells have dynamic
links and an active link can both receive and propagate digital hormones. Digital hormones are
also different from the conventional “broadcast” messages. Digital hormones are “propagated”
through the network and they can be modified, delayed, relayed, or terminated by the receivers
on the way of propagation, and there is no guarantee that all receivers will get the exact copy of
the original digital hormone.

Digital hormone-based communication is also different from the concept of pheromone that

recently gains much popularity in controlling multiple agent systems (Brueckner 2000). Digital
hormones are signals that circulate inside a organism between cells, whereas pheromones are

20-67

chemicals deposit externally in the environment and they are between organisms. Because of this
difference, digital hormones and pheromones serve very different functions in biological
systems.

Finally, communication based on digital hormones has a number of advantages over
conventional communication methods. First, it can deal with the dynamic network problem
because communication is accomplished by the bindings between a digital hormone and a
receptor of the receiver r-cell. A sender does not need to know the names of the receivers, and
parties of the network can come and go. A r-cell can migrate from one location to another yet the
communication remains effective. This communication protocol is also efficient, for it can
control complex global actions using a small number of signals, and scalable, for it puts no
restriction on the internal structure of the communication parties nor their relationships.

Digital Hormones for Synchronization. Synchronization is such an important issue in self-
organizational systems, and it is worthwhile to investigate how digital hormones accomplish that.
The issue is to determine when r-cells should execute their actions so that desired global effects
can be achieved. One approach to accomplish synchronization among r-cells is to designate a
synchronization center that broadcasts synchronization signals to all subsystems. Such
broadcasts can either be continuous or wait for the right moment. In either case, this approach
must pay a high cost of communication because all subsystems must inform the center about
their readiness. Another approach is to assume that every subsystem has a local clock that is
synchronized globally. This approach requires no communication for synchronization but is not
universally realistic.

In the digital hormone-based control framework, when the time for hormone propagation is
negligible relative to the tasks to be synchronized, synchronization can be achieved naturally by
the flexible interpretations of digital hormones. Since digital hormones can be “held” at a site for
the occurrence of certain events before traveling further, they can be used as tokens for
synchronizing events among r-cells. This is similar to the method of converge-cast discussed in
(Lynch 1990) and this is especially good for serial synchronization.

The parallel synchronization requires more computational resources. A r-cell cannot execu;e its
local action 1mmed1ately after a hormone is recelved It must negotlate with all r-cells in the

. vparty to -ensure that ail actions are-startcd>at~the-same-thric-For-this purpose, we propost -

synchronization algorithm, which runs on each r-cell in parallel and guarantees the same starting
time (ignore the delay of hormone propagation) for all synchronized actions. The key idea is that,
for any action that is triggered by a given digital hormone, a r-cell can infer that all other r-cells
are ready to start when it receives the “expected number of digital hormones™ from every active
neighbor. Interestingly enough, the “expected number of digital hormones” for a neighbor is the
number of active links of that neighbor. Thus, to achieve parallel synchronization, each r-cell in
the group generates and propagates a hormone to all its neighbors before it executes its action. It
then counts the number of received hormones for each active link. As soon as the expected
number of hormones is received for a link, it generates a new hormone and propagate this new
hormone to the rest of its neighbors. As soon as all active links have received the expected
number of hormones, the r-cell executes the action and it is guaranteed to be parallel with all
other r-cells’ actions.

21-67

B

Digital Hormones for Collaboration. In a self-reconfiguration system, a r-cell can be triggered
to generate a new digital hormone in two cases: by an external stimulation such as a visual signal
or a radio command, or by a received dlgltal hormone. Thus, there may be times when multiple
digital hormones are simultaneously active in the organization. How do r-cells react to multiple
hormones, especially when they are conflict to each other? How do conflicting digital hormones
resolve themselves? These are the questions that must be answered by the management of digital
hormones.

At the moment, we assume that each digital hormone carries a priority value initiated by its
generator. When a r-cell generates a new digital hormone, it will associate a priority value to the
hormone, and priority is determined by the nature of the stimuli or receptors. We assume that
external stimuli will have higher priorities than the internal ones. For example, hormones
triggered by the visual stimuli will have a higher priority than those triggered by audio stimuli,
which in turn higher than those triggered by hunger. When a r-cell receives two conflicting
hormones, it will response to the higher priority one and ignore the lower one. How a r-cell
detects conflicts among multiple hormones is an interesting question. For initial implementation,
we will give the conflict criteria to r-cells as constraints.

For a particular global task, the r-cell that generates the digital hormone is the temporal leader
and coordinator of that task. For example, the tail r-cell is the leader for the task specified in an
ALT digital hormone. Some actions are single events, and others may require a sequence of
digital hormones. For a r-cell to generate a sequence of digital hormones, we assume that the r-
cell has the local knowledge about the sequence. One possible representation of such knowledge
is the action-list specified in a procedure. We assume that all r-cells are given the same initial
knowledge about tasks, procedures and primitive action lists. Thus any r-cell can become the
leader of a task if it is required.

Digital hormones are terminated in a way similar to the way they are generated. That is, a T-cell
can stop producing digital hormones either by self-promotion (because of an external stimulus)
or by other digital hormones. For example, a digital hormone may be terminated if certain values
are read from a local sensor, or if it receives a special digital hormone. For example, as shown in
Figure 9, a r-cell will terminate its RCT when it receives a TAR.

Another interesting question about hormone management is how r-cells select actions to
collaborate. with one another. Since actions are selected independently by individual r- 2lls, it is

- possibie that actions of iwo r<Celis violale Sofie Consiraifivs itrthie-gait procedure. Thcurbu: are

conflict resolution phase will also be required.

3.2 2001-2002 Period

To build self-reconfigurable systems and understand the principles of self-reconfiguration, we
have been working on several joint projects with DARPA and AFOSR to develop prototypes and
theories for physical self-reconfigurable systems. The CONRO project has built a metamorphic
robot [1-6], the SOALA project [7-10] has developed a distributed control framework and related
algorithms for self-reconfigurable systems, and the HORMCOMM project [11, 12] has
developed a mathematical model for adaptive communication and self-organization in
reconfigurable systems.

22-67

Figure 1: CONRO self-reconfigurable modules and configurations of snake, insects, and rolling track

The CONRO metamorphic robot is made from a homogeneous set of autonomous reconfigurable
modules that can change their physical connections and configurations under computer or human
command to meet the demands of the environment. Each CONRO reconfigurable module has a
size of 1.0 inch? cross-section and 4.0 inch long and is equipped with a micro-controller, two
servo motors, two batteries, four connectors for joining with other modules, and four pairs of
infrared emitter/sensor for communication with neighboring modules and docking guidance.
These modules are autonomous and self-sufficient and they have the docking capability and can
connect and disconnect with each other to form various shapes. For example, Figure 1 shows a
single module in a human hand, an 8-module snake, two 9-module six-legged insects, and an 8-
module rolling track. Using novel control approaches, such as digital hormone model [1, 7-9]
and role-based control [5, 13], developed in CONRO and SOALA, our reconfigurable robots can
perform online bifurcation, unification, and behavior-shifting that are unique for reconfigurable
systems. There is no fixed “brain” module in the CONRO robot, and every module behaves
properly according to their relative position in the current configuration. For example, a moving
CONRO snake robot can be bifurcated into pieces, yet each individual piece will “elect” a new
head and continue to behave as an independent snake. Multiple snakes can be concatenated (for
unification) while they are running and become a single and coherent snake. For online behavior
shifting, a tail/spine module in a snake can be disconnected and reconnected to the side of the
body, while the system is running, and its behavior will automatically change to a leg (the
reverse process is also true). For fault tolerance, if a multiple legged robot loses some legs, the
robot can still walk on the remaining legs without changing the control program. The CONRO
robot can also perform self-reconfiguration in certain configurations. Figure 2 shows the steps of
reconfiguration from a snake shape to a two-legged creature that can do a locomotior. gait similar
to the two-atm buiterfly stroke.in swimming. Eor.movies and.more information abont. CONRO,..o
please visit the web site http://www.isi.edu/conro. '

Figure 2: A CONRO “snake” self-reconfigures into a “butterfly walker.”

It is a great challenge to control a self-reconfigurable system such as CONRO. Each module is
an autonomous and intelligent agent, and its actions must cooperate with others in order to

23-67

generate the desired global action in a given physical configuration. The concept of configuration
can be interpreted in several ways. The physical interpretation is that it represents the structure or
shape of the system. The connectivity interpretation is that it is a communication network
topology. The control implication is that global actions (such as locomotion for a robot) require a
re-computation of the local actions to be executed by the individual modules. These local actions
depend on the position of the agent in the current configuration. In the past, we have focused on
two general problems for self-reconfigurable systems: (1) how agents communicate with each
other when connections and configurations change dynamically and unexpectedly, and (2) how
agents collaborate local actions in the physically and tactically coupled organization. These two
problems occur in many types of self-reconfigurable systems, including distributed sensor
networks [14], swarm robotic system [15], and self-assembly system in space [16]. Note that
ultimately the cooperative control in self-reconfigurable systems must be dynamic, to deal with
the changes in network topology; asynchronous, to compensate the lack of global clocks;
scalable, to support ever-growing structures and shape-alteration; collaborative, to enable global
efforts by local actions in a physically and tactically coupled organization; reliable, to recover
from local damages and provide fault-tolerance; and finally, self-adaptation, to select and form
the best configuration for the task and environment in hand.

3.2.1 Adaptive Communication

As described above, the modules in a self-reconfigurable robot are reconfigured structurally. The
physical interpretation of this action is that shape morphing occurs. The connectivity
interpretation is that the modules have a new communication network topology. The control
implication is that global actions such as locomotion require a re-computation of the local actions
to be executed by the individual modules. These local actions depend on the position of the
module in the reconfigured structure. To the best of our knowledge, such control approach can
support some unique and new capabilities, such as distributed and online bifurcation, unification,
and behavior-shifting, which have not been seen before in robotics literature. For example, a
moving snake robot with many modules may be bifurcated into pieces, yet each individual piece
can continue to behave as an independent snake. Multiple snakes can be concatenated (for
unification) while they are running and become a single but longer snake. For behavior-shifting,
a tail/spine module in a snake can be disconnected and reconnected to the side of the body, and
its behavior will -autcinatically - change - te-a-leg-{fhe-reverse process is also tus)~fa~fault
tolerance, if a multiple legged robot loses some legs, the robot can still walk on the remaining
legs without changing the control program. All these abilities would not be possible if modules
could not cope with the topological changes in the communication network.

24-67

Lm

In this section, we describe an adaptive
communication protocol for dynamic
networks such as those used in self-
reconfigurable robots. Using this protocol,
modules can communicate even if the
topology of the network is changing
dynamically and unexpectedly.
Communication with this protocol will be
shown to be robust, flexible, and will allow
reconfiguration while the network is in
operation. The reconfiguration can either be
self-initiated, superimposed by external
agents, or in response to sensor interaction
with the environment.

Using the concept of hormone messages and
local topological types defined above, we
can define the Adaptive Communication
(AC) protocol for continual rediscovery of
network topology and ensure adaptive
communication. Figure 3 shows the pseudo-
code program for the AC protocol. The main
procedure is a loop of receiving and sending
(propagating) “probe” hormones between
neighbors, and selecting and executing local
actions based on these messages. A probe is
a special type of hormone that is used for
continuously discovering and monitoring
local topology. Other types of hormones that
can trigger more actions will be introduced
later. All modules in the network run the
same program and every module detects

changes in iis local “topSiogy (& the |~

changes in the active links) by sending
probe messages to its connectors to discover
if the connectors are active or not. The
results of this discovery are maintained in
the vector variable LINK[C], where C is the

number of connectors for each module (e.g., C=4 for a CONRO module). If there is no active
link on a connector ¢ (or an existing active link on ¢ is disconnected), then sending of a probe to
¢ will fail and LINK][c] will be set to nil. If a new active link is just created through a connector
¢, then sending a probe to ¢ will be successful and LINK[c] will be updated After one exchange
of probes between two neighbors, both sides will know which connector is involved in the new

OUT: the queue of messages to be sent out;

IN: the queue of messages received in the background,;

C: the number of connectors for each module;

MaxClock: the max value for the local timer;

LINK[1,...,C]: the status variables for the connectors (i.e., the
local topology), and their initially values are nil;

A hormone is a message of [type, data, sc, rc], where sc is the
sending connector through which the message is sent, and rc is
the receiving connector through which the message is received.

Main()
LocalTimer = 0;
Loop forever:
For each connector c=1 to C, insert [probe,_,c,]in OUT;
For each received hormone [type, data, sc, rc] in IN, do:
{ LINK][rc] =sc;
If (type # probe) then
SelectAndExecuteLocal Actions(type, data);
PropagateHormone(type, data, sc, rc);

}
Send();
LocalTimer = mod(Local Timer+1, MaxClock);
End Loop.

SelectAndExecutelocal Actions(type, data)
{ // For now, assume that when LocalTimer=0, a module will
// generate a test hormone to propagate to the network
// Other possible local actions will be introduced later.
If Local Timer==0, then for ¢=1 to C, do:
Insert [Test, 0, ¢, nil] into OUT;
}

PropagateHormone(type, data, sc, rc)
{ For each connector c=1 to C, do:
If LINK[c}#0 and c#rc, then
{ Delete [probe, *, c, *] from OUT;
Insert [type, data, ¢, nil] into OUT; // propagation
) .
}

Send() - ' T
¢ Foreaeh connector ¢=1 m(, do: " oy
get the first message [type,*.c, *] from OUT
Send the message through the connector c;
If send fails (i.e., time out), LINK[c] = 0.

R M

Figure 3. The Adaptive Communication (AC) Protocol

sy

active link and their LINK variables will be set correctly’.

! For example, if an active link is created between the connecfor x of module A and the connector y of module B,
then LINK[x]=y for module A, and LINK[y]=x for module B. The LINK[C] variable represents the local topology

25-67

The AC protocol has a number of important properties that are essential for adaptive
communication in self-reconfigurable networks.

Proposition 1: Using the AC protocol, all modules can adapt to the dynamxc topologlcal changes
in the self—reconﬁgurable network and discover their local topology in a time less than two
cycles of the main loop. The updated local topology information is stored in LINK[c].

To see this proposition is true, notice that initially all LINK variables have a nil value. If a
module has a neighbor on its connector ¢, then LINK[c] will be set properly when this module
receives a probe on that connector. Since every module probes all its connectors in every cycle
of the program, the LINK|[c] will be updated correctly with at most two cycles.

Proposition 2: If the network is acyclic graph, then the AC protocol guarantees that every non-
probe message will be propagated to every module in the network once and only once. The time
for propagating a hormone to the entire network is linear to the radius of the network graph.

To see that proposition 2 is true, notice that when a new message is generated (e.g., [Test,*,*,*
in Figure 3), it will be sent to all active links from that module. When a module receives a
hormone, it will send it to all active links except the link from which the hormone is received.
Since the network is acyclic, the generator module can be viewed as the root of a propagation
tree, where each module will receive the hormone from its parent, and will send the hormone to
all its children. The propagation will terminate at the leaf nodes (modules) where there is no
active links to propagate. Since the tree includes every module, the hormone reaches every node.
Since every module in the tree has only one parent, the hormone will be received only once by
any module.

For networks that contain loops (cyclic graphs), the AC protocol must be extended to prevent a
hormone from propagating to the same module again and again. To ensure that each hormone is
received once and only once by every module, additional local information (such as local
variables) must be used to “break” the loop of communication. We will illustrate the idea in the
ADC protocol when we describe the control of rolling tracks, which is a cyclic network.

3.2.2 Hormone-Inspired Distributed Control

As described above we want a distributed control protocol that is identity free but supports a
module to select its actions based on its location in the network. Since hormones can trigger
different actions at different site and. every module continuously d'qccve"les 1ts local topology,
-..such a control method-can bedefined based-onthehormons messages. = - v wmenoe

To illustrate the idea, let us first consider an example of how hormones are used to control the
locomotion of a metamorphic snake robot. Consider a 6-module CONRO snake robot and its
caterpillar gait. The types of modules, from the left to the right, in this robot are: T1 (the head),
T16, T16, T16, T16, and T2 (the tail). To move forward, each module’s pitch motor (DOF1)
goes through a series of positions and the synchronized global effect of these local motions is a
forward movement of the whole caterpillar (indicated by the arrow). In general, the wavelength
of the gait can be flexible (e.g., a single module can craw as a caterpillar).

To completely specify this gait, one can use a conventional gait control table [6] shown, where
each row in the table corresponds to the target DOF1 positions for all modules in the
configuration during a step. Each column corresponds to the sequence of desired positions for
one DOF1. The control starts out at the first step in the table, and then switches to the next step

type of a CONRO module. For example, a module is type TO if LINK[fLr,b] = [nil,nil,nil,nil}; type T2 if
LINKIf,1,r,b] = [b,nil,nil,nil]; and type T21 if LINK[f,L,r,b] = [nil,b,b,f].

26-67

when all DOF1 have reached their target position in the current step. When the last step in the
table is done, the control starts over again at step 0.

The problem of this conventional gait table method is that it is not designed to deal with the
dynamic nature of robot configuration. Every time the configuration is changed, no matter how
slight the modification is, the control table must be rewritten. For example, if two snakes join
together to become one, a new control table must be designed from scratch. A simple
concatenation of the existing tables may not be appropriate because their steps may mismatch.
Furthermore, when robots are moving on rough ground, actions on each DOF cannot be
determined at the outset.

To represent a locomotion gait using the hormone idea, we notice that Table 2 has a “shifting”
pattern among the actions performed by the modules. The action performed by a module m at
step ¢ is the action to be performed by the module (m-1) at step (#+1). Thus, instead of
maintaining the entire control table, this gait is represented and distributed at each module as a
sequence of motor actions (+45°, -45°, -45°, +45°). If a module is performing this caterpillar
gait, it must select and execute one of these actions in a way that is synchronized and consistent
with its neighbor module. To coordinate the actions among modules, a hormone can be used to
propagate through the snake and allow each module to inform its immediate neighbor what
action it has selected so the neighbor can select the appropriate action and continue the hormone
propagation. This example also illustrates that hormones are different from broadcasting
messages because their contents are changing during the propagation.

To implement the hormone-inspired distributed control on the AC protocol, each module must
react to the received hormones with appropriate local actions. These actions include the
commands to local sensors and actuators, updates of local state variables, as well as modification
of existing hormones or generation of new hormones. Modules determine their actions based on
the received hormone messages, their local knowledge and information, such as neighborhood

1
topoll 08y (mOdu e typ CS) or the states of // Built on the AC protoco! by adding a RULEBASE and
local sensors and actuators. . /l extending the following procedure.
For these purpose, we specify the

Adaptive and Distributed Control (ADC) | SelectAndExccuteLocal Actions(sype, data)
{ // Select appropriate actions based on

protocol liS§ed in Figure 4 The ADC I/ type, data, LINK, LocalTiner, and RULEBASE;
protocol is the same as the AC protocol | N

" “‘except that there is a RULEBASE and the ™ A ctions €SelectActions(type, data ;L iNK;Locai Tiitier; RULEBASE),”

d For each action @ in Actions, do ExecutcAction(a);
procedure)

SelectAndExecuteLocalActions() is
xtended le i RULEBASE:
f) e d t}tlo ST c.t 2;1nd [ej);f cute actlolils { // The rules here are similar to the receptors in biological cells.
asc .On ¢ rules 1{1 the RULEBASE. The // They are task-specific “if-then” rules as those in Table 3;
selection process is based on (1) local | /# Although each desired task has a different set of rules,
topology information (such as LINK[] and // the rules can be combined together if they are not conflicting.
the module type), (2) the local state }
information (such as local timer, motor Figure 4. The Adaptive and Distributed Control Protocol -
and sensor states), and (3) the received

A X A P L SRR e SN Y

hormone messages. Biologically speaking,
the rules in RULEBASE are analogous to the receptors in biological cells, which determine
when and how to react incoming hormones. A module can generate new hormones when
triggered by the external stimuli (e.g., the environmental features such as color or sound) or by a

27-67

received hormone message. When there are multiple active hormones in the system, the modules
will negotiate and settle on one hormone activity.

To illustrate the idea of action selection based on rules, let us consider how the caterpillar
movement is implemented. The required rules for this global behavior are listed in Table 3. In
this table, the type of the hormone message is called CP, and the data field contains the code for
DOF1. The other fields of hormones are as usual, but we only show the field of sender connector
(sc) for simplicity.

TABLE 3; THE RULEBASE FOR THE CATERPILLAR MOVE

Module Local Received Perform Send Hormene
Type Timer H Data Action
Tl 0 DOF1=+45 CP, A, b
Ti (1/4)*MaxClock DOF1=-45 CP, B, b]
T1 (1/2)*MaxClock DOF1=-45 CP,C, b
T1 (3/4)*MaxClock DOF1=+45 CP, D, b]
T16,T2 A DOF1-=45 CP, B, b]
T16,T2 B DOF1=45 CP, C, b]
T16,T2 C DOF1=+45 CP,D, b
T16,T2 D DOF1=+45 CP,A,b

All modules in the robot have the same set of rules, but they react to hormones differently
because each module has different local topology and state information. For example, the first
four rules will trigger the head module (type T1) to generate and send (through the back
connector b) four new hormones in every cycle of MaxClock, but will have no effects on other
modules. The last four rules will not affect the head module, but will cause all the body modules
(T16) to propagate hormones and select actions. These modules will receive hormones through
the front connector f and propagate hormones through the back connector 5. When a hormone
reaches the tail module (T2), the propagation will stop because the tail module’s back connector
is not active. The speed of the caterpillar movement is determined by the value of MaxClock.
The smaller the value is, the more frequent new hormones will be generated, thus faster the
caterpillar moves. ,

Compared to the gait control table, the ADC protocol has a number of advantages. First, it
supports online reconfiguration and is robust to a class of shape alterations. For example, when a
snake is cut into two segments, the two disconnected modules will quickly change their types
from T16 to T2, and from T16 to T1, respectively (due to the AC protocol). The new T1 module
will serve as the head of the second segment, and the new T2 modile will become the tail of the
- first segment. Both segments will continue move as caterpillar” Similarly, when two or more
snakes are concatenated together, ail the moduies that are connccted will become T16, and the
new snake will have one head and one tail, and the caterpillar move will continue with the long
snake. Other advantages of this hormone-inspired distributed control protocol include the
scalability (the control will function regardless of how many modules are in the snake
configuration) and the efficiency (the coordination between modules requires only one hormone
to propagate from the head to the tail). Let » be the number of modules in the snake, then the
ADC protocol requires only O(n) message hops for each caterpillar step, while a centralized
approach would require O(’) message hops because n messages must be sent to #» modules.

In general, the ADC protocol has the following properties:

1. Distributed and Fault-Tolerant. There are no permanent “brain” modules in the system
and any module can dynamically become a leader when the local topology is appropriate.
Damage to single modules will not paralyze the entire system.

2. Collaborative Behaviors. Modules do not require unique IDs yet can determine their
behaviors based on their topology types and other local information. The global
behaviors can be locomotion or self-reconfiguration.

28-67

3. Asynchronous Coordination. No centralized global real time clocks are needed for
module coordination, and actions can be synchronized via hormone propagation.

4. Scalability. The control mechanism is robust to changes in configuration as modules can
be added, deleted, or rearranged in the network.

The ADC protocol can be applied to many different robot configurations. All that is required is
to provide the appropriate set of rules to the protocol and have the correct initial configuration in
place. For example, Table 4 lists the set of rules that will enable a legged robot to walk. In other
words, the left leg modules are T6, the right leg modules are T5, the head is T21, the tail T19,
and the spine modules are T29. The hormone message used in Table 4 is named as LG. We use
set notation such as {I,b,r} as a shorthand for the set of connectors to send the hormone. The
action Straight means DOF1=DOF2=0. The action Swing means to lift a leg module, swing the
module forward, and then put the module down on the ground. The action Holding means to hold
a leg module on the ground while rotating the hip to compensate the swing actions of other legs.

TABLE 4: THE RULEBASE FOR A LEGGED WALK

Module Local Received Perform Send
Type Timer Hormone Data Action H
T21, T17, TI8 0 Straight LG, A, {lrb
T21, T17, T18 0.5*MaxClock Straight LG, B, {L1.b
T29, T19, T26, T28 A Straight LG, B, {lrb
T29, T19, T26, T28 B Straight LG, A, {lrb
T5 A Swing
T6 B Holding

The first two rules indicate that the head module, which can be type T21, T17, or T18, is to
generate two new LG hormones with alternative data (A and B) for every cycle of MaxClock.
This hormone propagates through the body modules (T29, T26, or T28) and the tail module
(T19), alternates its data field, and reaches the leg modules, which will determine their actions
based on their types (T5 or T6). ‘

This control mechanism is robust to changes in configurations. For example, one can
dynamically add or delete legs from this robot, and the control will be intact. The speed of this
gait can be controlled by the value of MaxClock, which determines the frequency of hormone
generation from the head module.

As another example of how to use the ADC .

T ey N £, S U U AL AR

- protocol to”~“contrdl " "Tocomotion ot self- “* LY I A
reconfigurable robots, Figure 5 shows the I " lr =

configuration of the rolling track. Notice that in L J eection
this configuration, all modules are of type T16, mmnn ——

only their DOF1 values are different. The track Figure 5. A rolling track conﬁguranon.
moves one direction by shifting the two DOF1

values (90, 90) to the opposite direction. ‘

Hormone pmpagalo

29-67

Table 5: The RULEBASE for a rolling track

Module Type | Local Variables Received CP Data | Perform Action Send Hormone
T16 Head=1, Timer=MaxClock DOF1=90, Timer=0, Head=0 | [RL,(90,90,1),b]
T16 DOF1=0 (90,90,1) DOF1=90, Timer=0, Head=1 | [RL,(90,0,0),b]*
T16 DOF1=0 (90,90,0) DOF1=90, Timer=0, Head=0 | [RL,(90,0,0),b]
T16 DOF1=0 (90,0,0) DOF1=0, Timer=0, Head=0 | [RL,(0,0,0),b]
T16 DOF1=0 (0,0,0) DOF1=0, Timer=0, Head=0 | [RL,(0,0,0),b]
T16 DOF1=90 (0,0,0) DOF1=0, Timer=0, Head=0 | [RL,(0,90,0),b]
T16 Head=0, DOF1=90 (0,90,0) DOF1=90, Timer=0, Head=0 | [RL,(90,90,0),b]
T16 Head=1, DOF1=90 {(0,90,0) DOF1=90, Timer=0, Head=0 | [RL,(90,90,1),b]

Note: * means send the hormone after all local actions are completed.

Table 5 lists the rules for a rolling track robot. The hormone used here is of type RL, and its data
field contains two values of DOF1, and a binary value for selecting the head module. One
hormone message continuously propagates in the loop (just as a token traveling in a token ring)
and triggers the modules to bend (DOF1=90) or straighten (DOF1=0) in sequence. We assume
that there is one and only one module whose local variable Head=1. This module is responsible
for generating a new hormone when there is no hormone in the loop. This is implemented by the
first rule, which will detect a time-out for not receiving any hormone for a long time (ie.,
looping through the program for MaxClock times). The head module is not fixed but moving in
the loop. We assume that the initial bending pattern of the loop is correct (i.e., as shown in Fig.
8) and the head module is initially located at the up-right corner of the loop. The rules in Table 5
will shift the bending pattern and the head position in the loop and cause the loop to roll into the
opposite direction of hormone propagation. Since hormone propagation is much faster than the
actual execution of actions, when a module is becoming the head, it is also responsible for
making sure all actions in the loop are completed before the next round starts. The head module
will hold the next hormone propagation until all its local actions (DOF1 moving from 0 to 90)
are completed.

Notice that the loop configuration is a cyclic network and module types alone are no longer
sufficient to determine local actions (in fact all modules in the loop have the same type T16). In
general, additional local variables (such as Head) are nccessary to ensure the global
collaborations between modules in a cyclic network. L

~-Dus to the potential of communication_errors, there m...v be s'hmfmnc where no module has the.
local variable Head=1 and there is a need for a new head module. ‘In such a case, it may be
possible to create a negotiation mechanism for one module to switch its local variable to Head=1,
if there are none in the group -- just like some schools of fish where a female changes gender if

the male in the group is dead. One possible implementation is to allow any module to self-

promote to become a new head if it has not received messages for a long time. In this case,
modules must negotiate among to ensure that there is one and only one head in the system.

3.2.3 Experimental Results

The hormone-inspired adaptive communication and distributed control algorithms described
above have been implemented and tested in two sets of experiments. The first is to apply the
algorithm to the real CONRO modules for locomotion and reconfiguration. The second is to
apply the algorithm to a CONRO-like robot in a Newtonian mechanics simulation environment
called Working Model 3D [39].

All modules are loaded with the same program that implements the ADC protocol illustrated in
Figure 3 and Figure 4. For different configurations, we have loaded the different RULEBASE.

30-67

B3 e LT Tk NI IS L1

All modules are running as autonomous systems without any off-line computational resources.

For economic reasons, the power of the modules is supplied independently through cables from .

an off-board power supplier.

For the snake configuration, we have loaded the rules in Table 3 onto the modules and
experimented with caterpillar movement with different lengths ranging from 1 module to 10
modules. With no modification of programs, all these configurations can move and snakes with

more than 3 modules can move properly as caterpillar. The average speed of the caterpillar

movements is approximately 30cm/minute. To test the ability of on-line reconfiguration, we have
dynamically “cut” a 10-module running snake into three segments with lengths of 4, 4, and 2,
respectively. All these segments adapt to the new configuration and continue to move as
independent caterpillars. We also dynamically connected two or three independent running
caterpillars with various lengths into a single and longer caterpillar. The new and longer
caterpillar would adapt to the new configuration and continue to move in the caterpillar gait.
These experiments show that the ADC protocol is robust to changes in the length of the snake
configuration. -
To test whether modules can automatically generate hormones when they receive appropriate
environmental stimuli from their local external sensors, we have installed two tilt-sensors on one
of the modules in the snake configuration, and loaded the following rules to the modules:

If tilt-sensors=[0, 1], generate hormone [FlipLeft,*,*

If tilt-sensors=[1,0], generate hormone [FlipRight,*,*

If tilt-sensors=[1,1], generate hormone [FlipOver,*,*
We defined the actions for FlipLeft, FlipRight, and FlipOver for all the modules so that when
these hormone messages are received, the modules will perform the correct actions for DOF1
and DOF2 to flip the snake back to its normal orientation. To test this new behavior, we
manually pushed the snake, while it is moving as a caterpillar, to its side or flipped it upside
down. We observed that the tilt-sensors are activated, new hormones are generated, a sequence
of actions is triggered, and the robot flips back to its correct orientation. (See movies at
http://www.isi.edu/conro.)
For the legged configuration, we have loaded the rules in Table 4 onto the modules and
experimented with the various configurations derived from a 6-leg robot (see Fig. 3). These
configurations can walk on different number of legs Without *chan,ging the program and the rules.

BT

‘While a 6-leg robot is Walking, we dynatnically reméved onheleg trom the robot and the Fob3T

can continue walk on the remaining legs. The removed leg can be any of the 6 legs. We then
dynamically removed a pair of legs (the front, the middle, and the rear) from the robot, and
observed that the robot can continue walk on the remaining 4 legs. We then systematically
experimented removing 2, 3, 4, 5, and 6 legs from the robot, and observed that the robot would
still walk if the remaining legs can support the body. In other cases, the robot would still attempt
to walk on the remaining legs even if it has only one leg. Although we have only experimented
robots with up to 6 legs, we believe in general these results can scale up to large configurations
such as centipedes that have many legs.

For the rolling track configuration, we have loaded the rules in Table 5 onto the modules and
experimented with rolling tracks with lengths of 8, 10, and 12. In all these configurations, the
rolling track moved successfully with speed approximately 60cm/minute. The current
configurations must have more than 6 modules and the number of modules must be even. This is
because there must be 4 modules with DOF1=90, and at least two other modules with DOF1=0.
To test the robustness of the system against loss of messages in the communication, we

31-67

FELIOTIV ey - e N A T

simulated random message losses in the program. We observed that when a message of [RL,
(*,*,0), b] is lost, the robot will stop rolling momentarily and then the head module’s local timer
will reach MaxClock, and a new hormone will be generated and the track will resume rolling. If
the lost message is [RL, (*,*,1), b}, then there will be no head module in the system, and the
robot will not roll again. However, since most messages are of the first kind, the chance of
failing to resume rolling is low. In practice, when message losses do occur, we only observed
non-recovery stops in rare occasions. -

In parallel with the experiments on the real CONRO robot, we have also implemented with the
ADC protocol on a simulated CONRO-like robot in a software Newtonian simulation
environment called Working Model 3D [39]. Using this three-dimensional dynamics simulation
program, we have designed a set of virtual CONRO modules to approximate the physical
properties of the real modules, including their mass, motor torques, joints, coefficient of friction,
moments of inertia, velocities, springs, and dampers. The ADC protocol is implemented in Java
and runs on each simulated module. We have experimented with and demonstrated successful
" locomotion in various configurations, including snakes with different length (3-12 modules) and
insects with different numbers (4-6) of legs.

3.3 2002-2003 Period

The construction and control of self-reconfigurable systems is a very challenging problem. A
self-reconfigurable system must adapt not only its behaviors by learning from experience, but
also its configurations by the needs of the mission and the environment in hand. Instead of a
single intelligent entity, a reconfigurable system is an organization of many intelligent,
autonomous, cooperative nodes/agents/robots that have both physical and logical connectivity. A
self-reconfigurable system is by definition multifunctional, robust, flexible, adaptive, and
capable of maintaining a long-term uninterrupted operation and dealing with situations that were
not anticipated by the designers. The control of self-reconfigurable systems require mental
abilities that are equivalent to human-level intelligence, and physical abilities that are equal or
superior to that of biological systems.

Self-reconfigurable systems are inherently distributeg!f.‘"“During' a problem solving process, new
agents might join and faulty agents may leave tiie netveork at any given time. As a result, the

+ nurber of agents-in-a seli-ieconfigurable systém and its-topology are continuously changing. ™

Agents are autonomous entities without unique global identifiers and their control processes are
running asynchronously. This means that they may execute actions and/or communicate with

other agents at anytime. In addition, they can only communicate with their neighboring agents

and have limited information about the network. Such characteristics make the problem of
controlling self-reconfigurable systems a challenging problem.

3.3.1 Distributed Task Negotiation

The goal in controlling a self-reconfigurable system (SRS) is to accomplish a given task. A SRS
can accomplish a task by generating a suitable group behavior for the given task. However,
agents in a SRS are autonomous entities and each agent is capable of initiating multiple tasks.
Therefore it is possible that multiple agents initiate many tasks at a given time. Many of these
tasks might be competing or even conflicting with each other. In such situation, the first step for
all agents in solving the problem of controlling a SRS is to negotiate on selecting the same task.

This is a very challenging problem due to several reasons: the relationships among agents are not
static but change with the configuration of the network, agents do not have unique global

32-67

T o RIS s 4 T

identifiers or addresses, agents do not know the global configuration in advance, and can only
communicate with immediate neighbors.

The previous approaches for solving the problem of distributed task negotiation can be divided
" into two categories. The first category includes the centralized approaches. They assume that
there is a central designated agent that selects a single task among the initiated tasks in the
network for all agents. For example, in the controller of the robot Toto [19] the active node,
which represents the current position of the robot, is the only node that does the selection.
However, such centralized approaches are inefficient for two reasons: 1) the central controller
agent creates a single-point failure for the entire system and 2) these approaches do not scale
well. Because communicating with the central controller agent becomes a bottleneck for the rest
of the agents. Other non-centralized approaches for solving this problem such as role-based
control [20] avoid the situation by assuming that there is only one agent can be the task initiator.
However, such an assumption constrains the robots capabilities in many real-world problems,
where multiple tasks might be generated.

The distributed task negotiation problem is a prominent problem in self-reconfigurable systems

such as self-reconfigurable robots, sensor networks, and multi-agent organizations. This problem
arises in situations where the autonomous agents in the self-reconfigurable system initiate

multiple tasks. These tasks might be competing or even conflicting with each other. For example,
in a snake shape self-reconfigurable robot, the tail module may want to move forward, while the
head module may want to avoid an obstacle by moving left. Therefore, selecting the right task
when there are many competing choices is a critical problem for controlling the self-
reconfigurable systems.

Formally, a distributed task negotiation problem consists of a tuple (P, L, T, S), where P is a list
of agents, p;, such that i € {1,..., N}; L is a list of communication links, J, such that j.k € {I,...,
N}; T is a list of tasks, #m, such that I<'m <N, and S is a set of task selection functions, S;: (T") -
t;,suchthati € {I,..,N} and T" cT. T' is called the available tasks. The task selection function of
each agent selects a single task from the set of the available tasks. Note that the size of the
network is unknown to the individual agents and the index number, i, assigned to each agent is
only used for defining the problem and not used ir. the negotiation process. A distributed task

-~ negotiation problem js solved when all ag_eﬁ‘té have selected the same task from 7, called ¢ and

have been notified that the negotiation process is terminated.

To illustrate the above definition, consider the example in Figure 1a, where P= {p;, p2, ps, p+ ps,
peds L= {2, lig 113, lis, Les}, T = {1, ts}, and S is a selection function that prefers tasks with larger
indexes and shared by all nodes. Initially, agents p; and ps have initiated two tasks, ¢, and f;,
respectively, and the rest of the agents are waiting to receive tasks. Figure 1b shows a solution
for the given problem where all agents have selected task . '

33-67

I L

Figure 1: An example of a distributed task selection problem. a) Initially P and pg initiated two tasks (t;, ts).
b) A solution, when all agents have selected t=ts.

The distributed task negotiation problem occurs in many types of distributed systems, including
for example, sensor network [Estrin, 1999 #73], swarm robots [Bonabeau, 1999 #74], or multi-
agent systems [Shen, 2002 #54]. In distributed multi-robot systems, previous approaches such as
the ‘role-based’ approach [Stoy, 2002 #70] prevent initiation of multiple tasks and allow only
one agent to be the task initiator in the entire network. Other approaches such as [Mataric, 1992
#63] [Yim, 1994 #1] allow all agents to initiate multiple tasks but assume a designated central
agent selects and dictates a task to all conflicting agents. Another field that faces the same
problem is distributed computing and algorithm design [Lynch, 2000 #43].

This work is different from all existing approaches. Unlike centralized approaches, DISTINCT
algorithm scales well with configurations and is robust to individual module failures. By letting
all modules to be the task initiators, DISTINCT allows cooperative distributed problem solving
[Durfee, 1991 #76] and can deal with both task negotiation and termination detection.

Assigning priorities to the competing tasks and forcing the nodes to select tasks that have higher
priorities [Lynch, 2000 #43] will not solve this problem since the number of nodes and initiated
tasks in the network are unknown. Additionally, in situations where the priority of the tasks can
change during the negotiation process, it is extremely difficult to determine the correct priorities
for an arbitrary set of competing tasks.

In centralized approaches, tasks do not need priorities. Instead, all initiated tasks are sent to a
central agent and this agent broadcasts its selected task to the rest of the agents. The limitations
of the centralized approaches are that they are not scalable and that communication with the
central agent is a bottleneck in the network. In addition, the failure of the central agent disables
the entire system.

In our solution, agents propagate their tasks to their neighbors. Meanwhile, agents generate a
Task Spanning Tree (TST) for each propagated task. As a result, when more than one task is
initiated, a forest of partial TSTs is created. These partial TSTs negotiate with each other and

.gradually merge into one and only one TST. Thls final TST represents the task that has been -

selected by all agents in the network. During me tree: bulldmg process, all agents report their
status to their parent agents. The negotiation process terminates when an agent that has no parent
has received reports from all of its children. This agent is the root of the final TST, and it then
notifies all agents in the tree with an “end of task negotiation” message and all agents will select
the task associated with the final TST.

For agents that have competing tasks to select a single task, the goal is to create a single TST.
Each agent must decide on two issues: 1) what task to select and propagate, and 2) how to be a
part of a TST.

Initially, task-initiating agents propagate their tasks by propagating task messages (TM) to their
neighboring agents and designating themselves as the root of a partial TST. Assuming that the
recipients of these messages are non-initiating agents and that each agent receives only one TM,
the recipients of the TM adopt the received task and create a “child-of” relationship toward the
sender of the TM. The non-initiating agents will in turn propagate the received task by sending
new TM to the rest of their neighbors, excluding their parent.

34-67

To illustrate the idea, Figure 2 shows an example in which, agents P; and P are the initiators of
tasks ¢; and ts respectively and the rest of the agents are non- initiator agents. Agents P; and P;
are the recipients of the TMs propagated by P; TM(t;), and therefore have selected task ¢,.
Similarly, P, and Ps are the recipients of the TM propagated by Ps, TM(ts), and therefore have
selected task 75 In this situation, parallel arrows show the “child-of” relationships that the agents
have created.

Figure 2: Task message propagation. Arrows on the links indicate messages in transit and arrows parallel to
links indicate the “child-of” relationship. Double circles indicate the roots of partial TSTs.

Based on the above assumption, no message has been propagated through the link /4. As a result
two TSTs have been formed; one rooted at P; and the other rooted at Ps. In each TST, all agents
have selected the same task.

At this point, if we relax the above assumption at this point, two cases might occur. 1) either a
root agent receives a TM, or 2) a non-root agent receives a TM from an agent that is not its
parent. An Example of the first case happens in Figure 2 when P;, a root agent, receives a fask
message from P, and an example of second case happens when Py, a non-root agent in the TST
rooted at Pg, receives a TM from P;, which belongs to another partial TST.

In the first case, the recipient, which is a root agent, drops being a root, adopts the received task,
establishes a “child-of” relationship with the sender of the TM, and propagates new TMs to the

rest of its neighbors, which are its children. In this situation, thesc agents adopt the new recelved
*“task and propagate it'to the rest of their nelghbors B

pu— . T VR Y

In the second case, the received TM is a conflicting message since it was received from a non-
parent agent. To resolve the conflict, the recipient agent detect deletes all of its previous “child-
of” relationships, makes a choice between the received and previously selected task (using its
task selection function), propagates newRoot messages (NRM) containing the new selected task
to all of its neighbors, and then designates itself as a new root for the selected task.

The role of the NRM is to merge partial TSTs and create a new root for the resultig TST.
Therefore, the recipient of a NRM adopts the received task, creates a new “child-of” relationship
with the sender of the NRM, becomes a non-root agent (if previously a root), and propagates a
new NRM containing the received task to the rest of its children

35-67

S L IR N WY AT e

Figure 3: Merged partial TSTs shown in Figure 2.

P,is the new root of the merged TSTs. Dashed arrows indicate the ack messages.

Figure 3 shows the result of merging the two partial TSTs in Figure 2 for the situation where P4
has been the agent that has received a conflicting TM from P;. As a result, Py selects t5between #
and #; (task with the higher index), promotes itself to be the root of the new TST, and propagates
NRM(ts) to P}, Ps, and Ps, which turns P;, and Ps to non-root agents. Consequently, P; will adopt
15 as its new task and propagate a new to P;and P;. This TM message causes task switch in those
agents. As shown in Figure 3, the final result of the task negotiation process is a single TST with
a specified root and a selected task. However, at this point the agents do not know that the task
negotiation process has been terminated. Unless a mechanism for detecting the termination of the
negotiation is in place, the agents would wait indefinitely. For this purpose, we have developed a
distributed termination detection mechanism, which is based on communicating
- Acknowledgement messages (AM) with the parent agent for the received TM and NRM messages.

The Distributed task negotiation process described above has been implemented as an algorithm
called DISTINCT. Given a distributed task negotiation problem, this algorithm ensures that all
agents select the same task coherently regardless of the number of competing tasks initiated in
the network. Figure 4 illustrates the high-level description of the DISTINCT algorithm.

Four types of messages are used. First, a task message (TM) is used for propagating the initiated
tasks. Second, a newRoot message (NRM) is propagated when a conflict is detected and partial
TSTs are to be merged. Third, an ack messages (AM) is used for detecting the termination event.
Finally, a taskSelected message is propagated from the root of the final TST to all nodes in the
network. : L s : : - :

- PRI

v Tusk initiator ugents-begin by call :

The ‘Links’ variable is the list of the communication links of an agent. In addition, the
ParentLink and ChildLinks variables specify the parent-child relationships among agents in a
TST. In line (a) of the initiated procedure, an agent designates itself as a root agent by assigning
a null value to its ParentLink variable. As a result, all of the communication links (Links) of the

root agents are marked as ChildLinks.

36-67

ing the imitiated procodure then wait for incoming messagesr oo wvaes

when initiated (task (¢)) do
SelectedTask=1;
ParentLink = null; (a)
ChildLinks = Links
for cach L e ChildLinks do
L.ackProcessed = false;
end do;
for each L e ChildLinks do
send (L ,task (f))
end do;
end do;
when received (task (¢), link (7)) do
for each L € Links do
L.ackProcessed = false;
end do;
if (SelectedTask = null or ParentLink = j)
SelectedTask=1t;
ParentLink = j;
ChildLinks = Links - j;
if (ChildLinks is not empty)
for each L € ChildLinks do
send (L ,task (2));
end do;
else send (ParentLink, ack (¢)); end if;
else SelectedTask =SelectionFunction (¢, SelectedTask);
ParentLink = null;
ChildLinks = Links
for each L € ChildLinks do
send (L ,newRoot (SelectedTask))
end do; end if;
end do;
when received (newRoot (¢), link ()) do
SelectedTask=1;
ParentLink = j;
for each L € Links do
L.ackProcessed = false;
end do;
ChildLinks = Links - j;
if (ChildLinks is not empty)
for each L e ChildLinksdo .
send (L ,newRoot (7)) end it‘;' end do;
else send (j, ack (t); en.. if; i
end do
when received (ack (z), link (i)) do
Jj. ackProcessed = true;
acknowledgeComplete? = true;
for each L e ChildLinks do
if (L. ackProcessed =false)
acknowledgeComplete? = false;
break; end if; end do;
if (acknowledgeComplete? = true)
if (ParentLink = null)
- ParentLink. ackProcessed = true;
send (ParentLink, ack (2));
else send(Links, taskSelected (¢)); end if; end if;
end do;

Figure 4: The DISTINCT Algorithm

37-67

. bt o e T s e TR U A

The ackProcessed variable is used for keeping track of the received ack messages to detect the
task negotiation termination event. The currently selected task is stored in the SelectedTask
variable. The acknowledgeComplete? in the ack procedure is a local variable that checks if all
the expected number of ack messages are received. When the value of this local variable is true

for the root of a TST, it detects that a single TST has been formed and the task negotiation
process is terminated. Consequently, it propagates a taskSelected message to all of its children.
The recipients of these messages will call the taskSelected procedure and eventually all agents
in the network will select the same task and the negotiation process is successfully terminated.

We showed that the DISTINCT algorithm will reach a stable state when all agents have selected
the same task. Assume there are N agents in the network. As a result of communication of the
initiated tasks, and just before any conflict is detected, the network is partitioned into a set of
non-overlapping sub-trees, which are the partial TSTs. Agents in the same partial TST have
selected the same task.

Based on the property that any two nodes in the tree are connected by a unique path, we may
conclude that there is at most one connecting link between any two partial TSTs. Otherwise there
will be more than one path from a node in one partial TST to a node in the other partial TST,
which will contradict the above-mentioned property. Consequently, if each partial TST is
considered to be a single “super” node, the resulting network is also a tree; see Figure 5. The
connecting links of these nodes are called conflicting links since the messages that they transfer
cause conflicts in the recipient agents.

Figure 5: A task network is partitioned by partial TSTs. Nodes are surrounded by polygons and double lines
~ indicate the conflicting links.

~"Based on the above description, and by considering that this algorithni fiergés pattial TSTs that
have conflicting links between them, DISTINCT algorithm will eventually produce a single TST.
Furthermore, since the selected task for all merged TSTs is the same, only one task will be
selected. In addition, due to the facts that there are only N-1 links (vertices) in a connected tree
with N nodes, and that merging will monotonically reduce the number of nodes, the number of
conflicting links will monotonically reduce to zero. This means a single TST can be created after
at most N times merging.

The complexity of DISTINCT can be estimated as follows. In the worst case, every initiated task
may override all of the other nodes selected tasks, therefore the worst-case time complexity of
the DISTINCT algorithm is O(NT) where N is the number of nodes and T is the number of
initiated tasks. Similarly, the total number of communicated messages is at most N7. It means
that each task is communicated to at most N nodes. If we assume that each node requires
receiving at least one message to know about a newly initiated task, we can conclude that the
number of messages communicated by DISTINCT algorithm is optimal.

38-67

RSN ST TIVEL

saww o

In our previous work for the distributed control of locomotion and reconfiguration, [3], we
assumed that only one task was generated by one module in the robot at a time. In the presence
of the DISTINCT algorithm, we can now relax this assumption.

Using the DISTINCT algorithm, a CONRO robot can select a single task among multiple
initiated tasks. For example, Figure 6 shows the schematic view of a four-legged CONRO robot
and its equivalent agent network. Two modules of the CONRO robot have initiated forward walk
and Obstacle Avoidance tasks. Therefore, as we saw earlier, the robot is capable of selecting a
single task and detecting the task negotiation termination event. In this experiment, Obstacle
Avoidance had a higher priority than the forward walk task.

task

+—
|.] Avoidance
(a

Figure 6: a) the schematic view of a four-legged CONRO robot. b) The node organization for the four-legged
CONRO robot. The robot has initiated two tasks.

The DISTINCT algorithm is also used on CONRO robot for many other behaviors. Enabled by
this method, the CONRO robot does not need to have any fixed “brain” modules and has "an
especially spectacular ability to adapt on the fly” (reported by SCIENCE, 8/8/2003 [101]).
Specifically, the robot can perform online bifurcation, unification, and behavior-shifting. For
example, a moving snake may be bifurcated into pieces, yet each individual piece continues
behaving as an independent snake. Multiple snakes can be concatenated (for unification) while
they are running and become a single but longer snake. For behavior-shifting, a tail/spine module
in a snake can be disconnected and reconnected to the side of the body, and its behavior will
automatically change to a leg (the reverse process is also true). In fault tolerance, if a multiple
legged robot loses some legs, the robot can still walk on the remaining legs without changing the
control program. All these abilities would not be possible if modules could not cope with the
topological changes in the configuration network. The movies of these remarkable physical self-

healing can be found at cur website http://www.isi.edu/robots. In fact, one cannot apprcmate thc
~+fuil significance of these accomiplishments withouit seeing thes¢ movies. =~~~ S

We have also evaluated the performance of the DISTINCT algorithm in the simulated SRSs
consisting of N = 10, 50, 200, and 1000 agents. Each agent has four connectors for connecting to
other agents. Configuration of the networks is randomly generated and for each configuration we
randomly selected a subset of 1, N/2 randomly selected and N agents to initiate tasks. Each
experiment is performed five times and averaged. '

Figure 7a shows the number of messages sent by the agents. Figure 7b shows the total number of
cycles required for solving each distributed task negotiation problem on a logarithmic scale.
Cycles are the number of times that an agent executes a loop to check the received messages and
send new messages. Figure 7c and Figure 7d show the average number of messages per node and
the average number of cycles per node, respectively.

39-67

As we can see, when there is only one initiator in the network no conflict is generated. In these
cases, each node needs only two messages for each child and one message for its parent to build
a tree that links all nodes and therefore the average number of messages and cycles per node is
constant. When multiple tasks are competing in the network the number of messages and cycles
per nodes increases because more nodes must build and merge partial spanning trees and switch
their tasks. The experiments show that in all cases, DISTINCT algorithm ensures that all nodes
select one and only one task in a distributed manner and the cost is of the low polynomial order
with respect to the number of competing tasks.

100000 77 100000
- !
& 1000 ;- £ 1000
8 2
E 1000 68 1 iriiator 9 10
5 BNz wtigors|| | O
¥ 1 SN nialors £ 10
E ¢ E 10
-3
1
0 5% 20 1000
Nurmber of Nodes (N Nurrber of Nodes (N
(@ ®)

]
8% o
2 g

z
g :
4 >
z 2
: s
2 2
5ok E :

1 0 20 1000 =z 10 0 20 1000
Nurrber of Nodes (N} Nurrber of Nodes (N)

© @

Figure 7: a) The number of cycles. b) The number of messages.
¢) The number of cycles/node. d) The number of messages/node.

To summarize this section, we presented a distributed algorithm called DISTINCT as a solution
for distributed task negotiation in a self-reconfigurable system. The algorithm allows a large
number of distributed agents to agree and select a task from many competing choices and

terminate the negotiation synchronously. The algorithm is proved corréct ini‘acyclic gfaphs andit =~

“optimality was discussed. The time complexity of DISTINCT algorithm is of the low polynomial
order respect to the number of competing tasks. We experimentally evaluated the DISTINCT
algorithm in the domain of self-reconfigurable robotics and simulation. The results show that this
algorithm is scalable and ensures that in all cases all nodes select one and only one task.

3.3.2 Distributed Behavior Selection

After all agents in the SRS agreed on the same task, they are left with the problem of
accomplishing the selected task by generating a group behavior. A group behavior is the result of
the coordinated performance of the individual agents’ behaviors. In this section, we will describe
how the behaviors are getting selected.

A SRS consists of a network of homogeneous agents. The only thing that differentiates the
agents from one another is their location in the network relative to other agents. This is called the
agent’s type, (it will be described in detail in the next section). For example, a four-legged shape

40-67

self-reconfigurable robot consists of the agents of types ‘front right leg’, *front left leg’, ‘back
right leg’, ‘front right leg’, ‘front spine’, and ‘back spine’, See Figure 8a.

The types of the agents in a SRS can uniquely identify them in the network and therefore agents
can use their type to select the right behavior for themselves. For example, to accomplish the
‘Move forward’ task, agents of types ‘front left leg’ and ‘back right leg’ will select ‘Swing
Backward’ behavior, agents of types ‘front right leg’ and ‘back left leg’ will select the ‘Lift up
and Swing Forward’ behavior and agents of types ‘front spine’ and ‘back spine’ will select ‘bend
left’ and ‘bend right’, respectively. Figure 8b shows the robot after the agents have performed
their selected behaviors.

“front right leg’ I “back right leg’ J I Lift-swing forward I Swing Backward

p— —
N ’ L l ‘back spine’ | I Bend I N Z Bend right
‘front left leg' l ‘back left leg’ l Swing Backward Lift-swing forward

(@ | (b)

Figure 8: (a) The types of the agents in a four-legged self-reconfigurable robot. (b) The selected behaviors of
each agent.

For example, if in the previous example ‘Move Forward’ was the selected task, a group behavior
should be selected that moves the robot forward. A possible group behavior for accomplishing
this task is shown in Figure 9. This group behavior is called the ‘four-legged moving forward’
and consists of the following behaviors: ‘front left leg’ and the ‘back right leg’ perform the ‘Lift
up and Swing Backward’ behavior, while the ‘front right leg’ and the ‘back leﬁ leg to perform

the ‘Swing Forward’ behavior and then'they switch their behav1ors - o

The ‘Move forward’ is a cyclic task (gait). Therefore, when agents complete performing their
selected behaviors, they will continue with selecting another behavior. In the above example,
agents of types ‘front left leg’ and ‘back right leg’ can now select ‘Lift up and Swing Forward’
behavior, agents of types ‘front right leg’ and ‘back left leg” can select the ‘Swing Backward’
behavior and agents of types ‘front spine’ and ‘back spine’ will select ‘bend right’ and ‘bend
left’, respectively. If agents continue selecting and performing these behaviors alternatively, a
group behavior, called ‘four-legged walk’, will be generated that can move the robot forward and
accomplish the task. '

41-67

“front right leg’) Fback right lng l Lift-swing forward | Swing Backward

= Lo] (e

‘front left leg' | ‘back left leg’ I Swing Backward Lift-swing forward

@) " (b)

Figure 9: (a) Modules at different parts of a four-legged CONRO robot.
(b) Modules after selecting and performing their behaviors.

So far, we saw that if agents in the network know their type in the network, they can use this
information to select behaviors that can accomplish the selected task. Now the quéstion is that
how agents can find out what is their type? Previous approaches for solving this problem include
approaches, where the human designer of the system specifies and assigns types to the modules
(agents) in the network.

Step M M, Ms
Mﬂ 0 " -45° ‘ M, 4
0 +45°
1 -45° +45° +45° +45°
2 -45°
. FvTD Controller I Step 0 I
o~ N Agent
‘ v
”)) o Lo I) M; - PR !.., iR e rimy s g oy
‘ \ Behavior Group @ e N T 417 S e
Behavior
(a) (b)

Figure 10: a) A central ‘gait control table’ controller for a caterpillar shape robot. b) A caterpillar robot
performing step 0. Controller agent is the left-most agent, M,

The centralized controller system that uses a ‘gait control table’ [8] is an example of such
approach. In this approach, the developer of the table specifies the type of each agent and the
behaviors are assigned to them based on their unique Ids. In this approach behaviors are stored in
the form of angle values columns of the table.

Figure 10a shows the “gait control table’. Each column of the table is a sequence of actions that
an agent executes over time. Therefore, it is equivalent to the behavior of that agent and the
combination of all columns of the gait table represents a group behavior. Although, in this
representation the action, behaviors and group behaviors are represented, but the agents do not

42-67

know why they have chosen these behaviors. This information is available to the designer of the
table in form of the agents’ type but is not explicitly represented in the table. This is the reason
why the agents (or the central controller agent) are unable to autonomously select new behaviors
to accomplish the task when the topology of the network changes.

Figure 10b shows a caterpillar shape network consisting of six robotic agents performing the
‘caterpillar move’ group behavior (gait). The agents are performing the actions at the ‘row 0* of
the table. The Controller agent is on the left. The controller agent maintains the ‘gait control
table’ and a counter called step, specifying the current row of the table. At each step, the
controller agent sends the pre-specified actions on the current row of the table to the
corresponding agents. After executing their actions, all agents send feedback messages to the
controller agent and after it receives feedback messages from all the agents, the controller agent
increment the step counter and sends the next row of the table.

In other approaches, agents are given explicit knowledge about their type in the network.
- Therefore, as oppose to the approaches based on the pre assigned types, these approach can
dynamically adapt with the topology changes in the Self-Reconfigurable Systems and agents can
autonomously select behaviors. Examples of such approaches are those proposed by [33] and
[20]. In these approaches, agents use their local information about how they are connected to
their neighboring agents, in order to detect their local types (types based on the local
information). The local type of the agent is then used for selecting behaviors. For example, to
generate a ‘four-legged walk’ group behavior in a four-legged robot, Figure , [33] and [20]
identifies the agents with only one active connection link as agent of local type ‘leg’ agents (the
four agents on the sides of the robot) and agents with more than one active connection links as
agents of local type ‘spine’ agents.

Behavior selection based on the pure local information (local type), although very effective, is
not enough for generating all possible group behaviors in a SRS. The following example shows a
situation where behavior selection based on the local type cannot generate the desired group
behavior. In this example, the goal is to generate two group behaviors called the ‘caterpillar
move’ for the caterpillar shape self-reconfigurable robot shown in Figure 11a, and the ‘butterﬂy
-move’ for the T s’hap'; self-reconfigurable robot shown in Figure 11b. The ‘caterpillar move’

.. group behavicr consists of a set of synchronized sinusoidal behaviors and the ‘butterfly move’ =~

consists of the following behaviors: agents C and D move up and to the left then move down and
to the right and agents A and B stand still. This moves the T shape robot to thc left.

L] /=] L] /Lo

\[II l/I ‘/l /l

‘"fb | 'fb |
(a)

é
]
]
X
\
]

=y

Ilfbb

et <] —rh<[]

Figure 11: (a) a network of agents in the form of a caterpillar robot. (b) The same number of agents in the
form of a T shape robot.

If we use the local connection information for selecting the behaviors to generate these two
group behaviors, it can be seen that how the agents’ B, C, and D connection links are connected
to their neighboring agents (their local type) are different in these two robots; i.e. in caterpillar
robot, the agent D’s ‘b’ connection link is connected to ‘f connection link of its neighboring
agent. While in the T shape robot, the agent D’s ‘b’ connection link is connected to the ‘I’
connection link of its neighboring agent. Therefore agents B, C, and D can use their local type to
correctly select a behavior based on the shape of the robot. However, this is not the case for the
agent A. In both robots, agent A has the same local connection links. This is while agent A is
expected to perform a sinusoidal behavior in the caterpillar robot configuration and a no
movement behavior in the T shape configuration. This shows that specifying the type of the
agents based on the pure local information is not enough to generate all possible group
behaviors.

Table 1 shows all 32 possible type(0) of a CONRO module. For example, according to this table,
the type(0) of agent A and B in are T2 and T21 respectively.

Table 1: All possible local types of a CONRO meodule.

This Module This Module
b| f|(r 1 [Type bl f{r I |Type
TO f| b T16
f Tl f b T17
b T2 f b |T18
8 b T3 b|b|b][TI9
8 b |T4 b | b T20
AE TS f b | b |T21
§ r T6 fl b b [T22
% blb T7 1{b| Db T23
5. b| b |T8 1 b | b |T24

= g b Ibl19 111 5w b~ 1725 B e P e e = (R A, R R R e

HEE T10 r[b|b T26
g 1 b T11 r b| b |T27
Sl b T12 r| b b |T28
r|b T13 flb|b]|b|T2
r b T14 1[b|b]|b][T30
r b T15 r[b]b]b|T31

Extended Types

In this section, we will introduce a new approach for specifying agents’ types in a SRS. The
types of the agents in this approach are called extended types (to be distinct from the local types).
Extended types are an extension to the agents’ local types. The extended types can solve the
limitations of behavior selection based on the pure local information (local types) and can
generate any group behaviors in a SRS.

44-67

The extended type, type(n), read as ‘the type of order »’, of an agent in a SRS is defined as how
the active connection links of the agent are connected to the connection links of the agents of
distance » . The distance between two agents is defined as the number of agents between the two
agents. For example in Figure 12, the distance between agents A and C is one and the distance
between A and B, which are immediate neighboring agents, is zero. The type(0) of agent A, will
be (bf). Because, agent B is the only agent of distance zero from the agent A and the b
connection link of agent B is connected to the f connection link of agent A. Extended type is
written starting from the other agent. Therefore, the type(0) of agent A will be (bf) and not (/).

Type(1) of agent A, which shows how the active connection links of agent A are connected to
agents of distance 1 will be [(b,b/),(b]5/)]. In Figure 12, the type of order zero, type(0), and one,

type(1), of all the agents are shown. Since agent B does not have any neighbor of distance 1, the
type(1) for this agent is not defined.

It can be seen that the definition of agent local type or role given by [33] and [20] is equivalent to
Type(0). In addition, global representation of the entire network for each agent is equivalent to
[type(0),type(1), . . ., type(d)], where d is the largest distance in the network.

In the previous example of selecting a behavior based on the local type, although the Type(0) of
agent A in both robots in Figure 12 were the same, [(5/)], but the type(1) of agent A in these two
robots are different; i.c. the type(1) of the agent A in caterpillar robot is [(b£,5/)] and in the T
shape robot is [(br,bf),(bl,bf)]. Therefore type(1) of the agent A can be used to select a required
behavior for the agent A in these two robots. Using the extended types, agents can uniquely
identify themselves in a SRS relative to other agents and select the appropriate behavior based on
the given task. Now we need to answer this question that ‘how the agents can detect their
extended types in the network?’ In the next two subsections we present solutions for this
problem.

~ | Type(0): [(rD)]
Type(0): [(50)] <—| ¢ :
Type(l) [(b7.),(b1,b0)] Type(1): [(/b,7D),(bl,b)]
A

——+——-|—<— B IO OB e

<— [p | Type(0): [(1B)]
Type(1): [(/5.1b),(br 1b)]

Figure 12: Agent type and distance

Extended Type Detection Using Path

In this section we will introduce a distributed approach for determining the extended type of an
agent in a SRS using the path field of the communicated messages. As we described before, the
path field of a message consists of a sequence of the agents’ connection links labels that is
‘constructed as the message gets propagated in the network. For the agent D in Figure, we will
see that the received path is a part of the agent D type(1) received from the agent A. Agent D can
build its extended type(1) after it receives a messages from the agent C and appends the message

45-67

path to its extended type. The items that are separated by comma in the path field of a message
are called path elements. The number of the path elements, P, and the distance between the
initiator of a message from the receiver of the message, d have the following relationships:

d=P-1

Based in this relationship, the receiver of a message can distinguish which type order the
received path belongs to and there it can build types of different order. For example, agent D can
distinguish a message that is originated from agent C belongs to type(1) because the number of
path elements in the path field of the message is two.

Behavior Selection Using Extended Types

According to what was mentioned in the above, ‘agents can detect their extended types based on
the following algorithm: After the task selection phase is complete, initially each agent selects a
behavior based on the information the agent has about its local active connection links with its
neighboring agents (This information is the agent’s type(0) and is available locally) and looking
up in the ‘Extended type to Behavior Mapping Table’ (OTBMT), mapping an extended type (in
this case type(0)) to a behavior. If no entry for the current local type was found, the agent
chooses a null behavior. Then each agent sends a message to its neighboring agents. This
message will be propagated to the other agents, while its path field is being updated. Meanwhile,
agents update their extended types according to the path filed of the received messages. When an
agent finds a match between a created extended type based on the received messages and an
extended type in the OTBMT it selects the new behavior in the table. Eventually, all agents will
detect their extended type and will be able to select to right behavior.

Although this approach can dynamically adapt to the changes in the topology of the network, it
has two problems. First, an initiated message form an agent will be propagated to the rest of the
agents in the network. This means that if there is N agents in the network the total number of
communicated messages will be of order O(N?) (Since N * (N-1) = N’ — N messages will be
communicated). This will be a problem in the networks with the large number of agents. The
second problem is that in the network where the maximum distance of the agents is large, as the
messages get propagated in the network, the size of the path field of the messages gets larger and
as a-result the size of the communicated message gets larger and larger. These two problems

- create bottlencck th the communication system in the large netwerks and-slow down-the-response

time of the network.

To solve these two problems, we set a maximum length for the path field of the communicated
messages. For example, if the maximum length of the path filed is set to &, after there are k path
elements in the path filed of the message, it will not be propagated to the other neighbors. In this
situation, if there are N agents in the network, and each agent has the average number of a active
connection links, the number of communicated messages will be of the order of O(N) (since at
most a*N messages will be initiated and each message will be communicated k times therefore
k*a*N messages). In addition, the size of the path field of the message will not be larger than a
maximum size, k, which will limit the size of the messages and also solves the second problem.
However, this might cause that some agents not to be able to identify their extended type and as
a result not to select the right behavior. In the next section we will solve this problem by creating
a set constraints among the agents’ selected behaviors.

46-67

Behavior Selection by Defining Constraints Among Behaviors

As we mentioned above, reducing the number of communicated messages, which is done to
improve the responsiveness of the SRS causes another problem i.e. some agents will not to be
able to fully detect their type and select a behavior. In order to solve this problem, we define a
set of constraints among agents’ selected behaviors. These constraints are in the form of
selection rule shown in .

- \‘i : \/I C\‘EIEZI\‘HE \4|F \‘I
NLEE |fb lr» Bfl:i R

Type(0): [(&f)] Type(0): [(/b)]
Type(1): [(3/,50] Type(1): [(f./5)]

Type(0): (). (6] TYPG(O) [(0B). (8]
Type(1): [(8/60] Type(1): [(/4,/5)]

Rules are of the form

if (received path is X)

and (the behavior is Y)

then (select behavior Z)
If path=(bf,bf) and behavior = CAT 0 If path = (/) and behavior = CAT_60
then select CAT 60 then select AT_90

= (bf) and behavior = CAT_0 =(bh and) behavior = CAT_90

It
then select CAT_30 then select c
Xf path = (Bb/) and behavior = CAT 30 thegaselecgb a“d1b°h"“"°’ CAT_0
then select CAT 90
- . . =(bfh and behavior = CAT 120
If path =(bf) and behavior = CAT_30 : then select C
then select CAT_60 () an and behav10r CAT 120
" I path = (&£Bf) and behavior = CAT_60 then select

then select CAT 120 - i T behavior Q.;CATith;nrsg_les!_ﬁQAL;ﬂ -

Figure 1: The behavior selection rules

To summarize this section on distributed behavior selection, we have described how agents agree
on the same task in a situation where multiple agents initiate many tasks and also after a task is
selected, how to select behaviors that generate a group behaviors. What we did not address in the
section was that agents couldn’t detect when the task selection phase or behavior selection phase
is done and the only thing they do in these situation is to wait indefinitely for new messages to
arrive. Therefore, a separate mechanism is required to inform the agents about the termination of
these processes. This mechanism is called the synchronization mechanism and the details of that
can be found in our publication [1].

47-67

3.4 2003-2004 Period

The topology of a self-reconfigurable Robot can change anytime. This can be as a result of the
failure of some modules of the robot, joining a new module to the robot, displacement of some
module from one location to another as a result of the self-reconfiguration task or any
combination of these cases. Considering that modules select their relevant behaviors to
accomplish a given task based on the current topology of the self-reconfigurable robot, modules
must be aware of the current topology of the robot and detect any changes to the topology. When
changes to the topology of the robot are detected, modules can investigate new ways of
accomplishing the given task. This document reports a distributed and dynamic way to discover
topology and alter system function according to the discovered topology. We will describe the
hardware and software architecture and algorithms for this capability and reports the
demonstration we did for the CONRO self-reconfigurable robots.

Another major technical accomplishment in 2004 is the design of a distributed functional
language called DH2 for programming of self-reconfigurable systems. DH2 is inspired by the
biological concept of hormones and neurotransmitters. It provides messaging and execution
constructs for distributed coordination among a collection of reconfigurable modules in
accomplishing of global tasks. Through its constructs DH2 facilitates easy programming of
locomotion and reconfiguration behaviors. DH2 is implemented as a meta-language on top of
C++ and is tested on a set of simulated CONRO modules. Experimental results support the
usability of DH2 for developing of autonomous self-reconfigurable systems.

3.4.1 Autonomous Discovery and Response to Unexpected Topology Changes

A self-reconfigurable system is a special type of complex systems that can autonomously or
manually rearrange its software and hardware components and adapt its configuration (such as
shape, size, formation, structure, or organization) to accomplish difficult missions in dynamic,
uncertain, and unanticipated environments. A self-reconfigurable system is typically made from
a network of homogeneous or heterogeneous reconfigurable modules (or agents) that can
autonomously change their physical or logical connections and rearrange their configurations.
Self-reconfigurable robots [1-4] are examples of such systems that consist of many autonomous
modules that have sensors, actuators, and computational resources. These modules are physically

...connected to each other in the form of a configuration. network. Since_the topology of the

network may change from time to time, the controller of the robot must be distributed and
decentralized to avoid single-point failures, communication bottleneck among modules and to
accomplish the given task.

These modules must have some essential capabilities in order to accomplish complex tasks in
dynamic and uncertain environments. The capabilities that we addressed in our previous work
were: (1) distributed task negotiation [5] — allowing modules to agree on a global task to
accomplish, (2) distributed behavior collaboration [6] — allowing modules to “translate” a global
task into local behaviors of modules; (3) synchronization — allowing modules to perform local
behaviors in a coordinated and timely fashion; In these previous works we assumed the network
of modules can have any initial topology but it remains unchanged during accomplishing a task.

Here we relax this assumption and allow the topology of the network of modules to change at
any time including the middle of accomplishing a task. Our solution is a distributed approach
inspired by the concept of hormones [10] and is based on 1) giving the ability of detecting local

48-67

. k5 0

changes in the topology of the network to the modules and 2) letting them coordmate their
activities in a new way such that the given global task is accomplished.

The related approaches for solving similar problems include Role-based Control [7] and
stochastic approaches for self-repair such as [8]. The first approach is based on the changes in
local relationships of the immediate neighboring modules. This approach requires less
computational power. However, it is an open-loop approach and might not be very flexible for
accomplishing complex tasks. The second approach has been applied to lattice-based self-
reconfigurable robot which their configuration space is much smaller than that of the chain- -type
self-reconfigurable robots such as CONRO.

The problem of autonomous discovery and functional response to topology changes can be
defined as follows: Given a global task and a set of self-reconfigurable modules, coordinating
global responses to local changes in the topology of the network of modules in order to produce
the desired global effects. Local changes include adding or deleting new modules or
communication links to/from the network of modules.

This problem is very challenging due to several reasons: relationships among modules may
change anytime; changes in configuration is locally detectable but a coordinated global response
is required; the number of modules in the robot is not known; modules have no unique global
identifiers or addresses; modules do not know the global configuration in advance, and can only
communicate with immediate neighbors. ‘

Generally, accomplishing a given global task is dependent on the topology of the network of
modules [6]. Modules can accomplish a global task by selecting correct behaviors in
coordination with other modules and performing them synchronously. As a result, changes in the
topology will directly influences the behaviors that should be selected and the time they should
be performed.

Formally, an autonomous discovery and functional response to topology changes problem is a
tuple [G(P, C), Q, T, where P is a list of nodes, p;; C is a list of labeled physical or logical links,
c;, such that j e {locally unique labels}; Q is the list of the internal state, g; associated with each
node p;. such thatie{1,..., N}; G is the confi, guration graph of the network of modules consisting
. of P nodes and C edges; T is the global task given to all nodes i

AR N RAIE .

In cases where graph g € G can accompllsh task 7, and assummg that 0—T means the internal
states of the nodes, O, produce the desired behaviors to accomplish task 7, an autonomous
discovery and functional response to topology changes problem is solved if and only if Qg — T
meaning that the internal states of the nodes are a function of the topology of the graph such that
the given task T is accomplished.

Here, the nodes and links represent the modules and the communication links between them,
respectively. Note that the size of the network is dynamic and unknown to the individual nodes;
also the index numbers are only used for defining the problem and not used in the solution.

Under these circumstances, a satisfactory solution to this problem must be distributed. Modules
must detect local changes in the configuration graph and inform the rest of the modules in order
to let them change their internal states.

To illustrate the problem, we use the CONRO self-reconfigurable robot as an example. CONRO
is a chain-type self-reconfigurable robot developed at USC/ISI (http://www.isi.edu/robots).

49-67

Figure 1 shows the schematic views of CONRO module and a six-legged CONRO robot. Each
CONRO module is autonomous and contains two batteries, one STAMP II-SX micro-controller,
two servomotors, and four docking connectors for connecting with other modules. Each
connector has a pair of infrared transmitters/receivers, called outgoing-Links and incoming-Links,
to support communication as well as docking
guidance.

Each module has a set of open 1/O ports so that
various sensors for tilt, touch, acceleration, and
miniature vision, can be installed dynamically.
Each module has two Degrees Of Freedom: Figure 1: A CONRO module, the schematic view of
DOF1 for pitch (about 0-130° up and down) and one module. and a hexanod (insect) configuration
DOF?2 for yaw (about 0-130° left and right). The range of yaw and pitch of a module is divided
to 255 steps. The internal state of each module includes the current values of the yaw, pitch of a
module, and the number of the sent and received messages. The modules’ actions consist of
moving the two degrees of freedom to one of the 255 positions, attaching to or detaching from
other modules, or sending messages to the communication links through the IR senders.

Modules can be connected together by their docking connectors. Connected docking connectors
are called active connectors. Docking connectors, located at either end of each module. At one
end, labeled back (b for short), there is a female connector, consisting of two holes for accepting
another module’s docking pins. At the other end, three male connectors of two pins each are
located on three sides of the module, labeled left (/), right () and front (f).

Probing and Communication

The first step for the modules in responding to the network topology change consists of detecting
local changes. Instances of local changes are: 1) When a new module connects to one of the
modules in the network, 2) When an existing module disconnects from all other modules in the
network, 3) When an existing module establishes a new connection with another module in the
network, and 4) When a module disconnects some of its connectors from other modules in the
network. In situations 1 and 2 the number of nodes and in situations 3 and 4 the number of nodes
and links in the configuration network changes. R
Modules can detect focal changes iur-the-topotogy-of thenctwork by-periodically wioniioring their =~
active docking connectors for disconnections and inactive docking connectors for new
connections. This action will be called probing. In order to detect all the above-mentioned cases
of topology change efficiently, we will use two types of probing: 1) Probing when modules are
communicating and 2) Probing using probing signals.

The communication protocols between modules that use handshaking signals when sending
and/or receiving messages can be used for probing the active connection links between modules.
A successful communication action over an active connector shows that the connection is still
active. Similarly, an unsuccessful communication action shows the disconnection of an already
active connector.

50-67

Incoming Communication || Outgoing v T Ty,
i . T2 5 :
]
H Data
. _L__.I :
! |
L)
: Data
1 : 1]
1] L] 4:
Sender Receiver A B C D Time
@ ®)

Figure 2: (a) The communication link and (b) the asynchronous communication protocol between two agents

Figure 2 shows an asynchronous communication protocol that was implemented in CONRO
modules. Agent; is the sender and agent; is the receiver. What follows is a brief description of
the handshaking sequence of this protocol:

1) The sender requests to send a message by making its outgoing link ‘High’, point A. and then
frequently checks its incoming link for receiving a ‘High’ signal.

2) The receiver responds by making its outgoing link ‘High’, point B, and waits.

3) After receiving the ‘High’, sender makes its outgoing link ‘Low’, point C, and starts sending
the message (Data) after some delay, point D. This short delay is called preparation time
(T3), which gives a chance to the receiver to prepare for receiving Data. Data is
communicated using RS232 asynchronous communication protocol. T; and T> are the
timeouts of the sender and receiver, respectively. '

This simple handshaking protocol successfully completes if and only if both modules actively
participate. Therefore a successful communication verifies an active link between two modules.
Oppositely, an unsuccessful communication confirms the recéiving module is not present and the
link is inactive., , :
" Thistiethod of ptobing, howevei, 1§ aot ain ¢icient way: of ‘probing=-the -inactive docking
connectors unless; an attempt to send a message and waiting for the timeout is what we have
been looking for. Also, in situations where two modules do not communicate for periods that are
longer than monitoring period, the communication-based approaches will not be useful. In such
situations we will use a different probing method based on sending probing signals.

Probing Signals

Probing signal are narrow pulses that are periodically sent to inactive connections or active
connections if no communication occurs on them for a long time. The width of probing signals is
quite narrow such that they can be distinguished and filtered from the communication protocol
signals. Figure 3 compares the probing and the communication protocol signals widths.

Figure 4 shows the block diagram of a module’s connection link. The ‘Probing Signal Filter’ on
the incoming link separates the probing signals from the communication signals. On the outgoing
link, the communication and probing signals are merged on a single output line.

51-67

Probing when GenerateProbe () do

Signals Communication for each C e Connectors do
Protocol if (C = Inactive) or (NoComm (C, Period) = true) do
A / \l/ \ Signal send ProbingSignal to C;
end do; end do; end do;

when CheckTopology () do
> TempLocalTopology = CurrentLocalTopology;
TopologyChanged = false;
Figure 3: Probing and Communication protocol signals; for each C € Comnectorsdo //reset

CurrentLocalTopology (C) = Inactive; end do;

Connection Link for each C € Connectors do

Communication if (CommOccurred (C') = true) or
Protocol b . . =
SubSystem Outgoing (Probe Signal Received (C) = true)
Link do
A — ~ .
< Probing Signal CurrentLocalTopology (C) = active;
- Sub-System
end do; end do;
1 . if (TempLocalTopology # CurrentLocalTopology) do
: foh Incomin, P
Probing Signal Link € " TopologyChanged = true;
Filter &
< end do;

return TopologyChanged;
Figure 4: Joining and separation of the probing and | end do;

communication signals
Figure 5: The Probing Algorithm

Probing Algorithm

Figure 5 describes the probing algorithm for detecting local changes in the topology of the
network. This algorithm consists of two procedures. The first procedure, GenerateProbe, is
called for generating probing signals on the inactive connectors or the active connectors that
have not communicated for longer than ‘monitoring period’.

The second procedure, CheckTopology, is called for detecting changes in local topology of the
network based on the received probing signals or the recent communicated messages. Thls
.. procedure returns a true value if the topology has been changed. :

Functional Response to Unexpected Topology Change using probmg

Our solution for the functional response to topology change problem in self-reconfigurable
robots relies on our previous work on distributed control for self-reconfigurable robots.
Specifically, the ‘distributed task negotiation’ and ‘distributed behavior collaboration’ problems.
In this section we will briefly describe these problems and their proposed solutions. Then we will
present our algorithm that is based on probing for solving the functional response to the topology
change problem.

Distributed Task Negotiation is a process by which modules in a self-reconfigurable robot can
negotiate and select a single coherent task among many different and even conflicting choices.

In [9] we presented the DISTINCT algorithm as a solution for the distributed task negotiation
problem. The main idea is that all modules work together to build global spanning trees and each
tree is associated with a task. Initially, all modules that have their own competing tasks start
building their own trees, but as they exchange messages for tree building, most modules will
give up their “root” status and participate in building trees for other tasks. In this process,

52-67

modules report their status to their parent module in the
tree that they participate, and the module that does not
have parent but received reports from all its children is

the root for the entire network of modules. When this New task
happens, this root module can conclude that the
negotiation process has succeeded and all modules in the
tree have agreed on the same task. An embedded
synchronization algorithm detected the termination of the
negotiation process.

Task
Important characteristics of this solution are: 1) modules accomplished

do not require having unique Ids; 2) ensures that all nodes
will select the same task coherently; regardless of the
number of competing tasks initiated in the network; and
“more importantly 3) it is not dependent on the topology

Perform the behavior
of the network of modules. / synchronously

Distributed Behavior Collaboration is a problem defined : =

as follows: Given a global task and a group behavior, :
selecting a correct set of local behaviors at each module g;::;‘;gv
and coordinate the selected behaviors to produce the

desired global effects.

In [6] we presented D-BEST algorithm. It is a new
approach to distributed behavior collaboration based on
the concept of “path” to represent extended neighborhood topology at the connector level. This
allows modules to select appropriate local behaviors for a given global task in a given
" configuration, based on the location of the modules relative to other modules. D-BEST algorithm
utilizes the modules’ extended type for behavior selection. The number of communicated
message were reduced from O(N?) to O(N) (where N is the number of modules) by introducing a
set decision rules representing the relevant behaviors for accomplishing a given task. The same
embedded synchronization algorithm used for the task negotiation algorithm was used here for
. synchronized execution of the modules behaviors. R

The FEATURE Algorithm

In this section, we will describe the FEATURE algorithm that brings all the above-mentioned
pieces together and solves the problem of functional response to topology change in self-
reconfigurable robots. This will be the algorithm that will run on all modules of the self-
reconfigurable robot to ensure the homogeneity of all modules. Figure 6 depicts this algorithm.

Figure 6: The FEATURE algorithm

Tnitially all modules will wait to receive a new task. The new task can be initiated by an outside
controller or by one of the sensors of a module. Receiving a new task initiates a distributed
negotiation process among all modules in the robot. This is necessary to ensure that 1) all
modules know what task they accomplishing and 2) in cases where multiple modules have
initiated more than one task, all modules will agree on accomplishing the same task that has the
highest priority. This process is controlled by the DISTINCT algorithm for task negotiation
shown on top of the Figure 6.

If the selected task is not already accomplished, modules will generate a set of relevant
behaviors. The relevant behaviors are represented by a set of decision rules that have been

53-67

downloaded in all modules. The execution of the selected behaviors will be coordinated by an
embedded distributed synchronization mechanism. The above-mentioned process is controlled
by the D-BEST, behavior collaboration algorithm shown in the middle of the Figure 6.

If the topology of the network of module changes while modules are performing their behaviors,
the modules that detected the local changes, will initiate the DISTINCT algorithm using the
current selected task in order to dynamically create a new spanning tree for synchronizing and
initiating new sets of behaviors based on the current topology of the network. The topology
detection process will be controlled by the probing algorithm shown on bottom of the Figure 6.

Experimental Results

We have implemented and tested the FEATURE algorithm and all of it sub-algorithms on the
CONRO self-reconfigurable robots. All modules are loaded with the same control program and
decision rules. For economic reasons, the power of the modules is supplied independently
“through cables from an off-board power supplier. But all modules are running as autonomous
systems without any off-line computational resources. ‘

In our experiment we gave a ‘Move’ task to a quadruped CONRO robot. The robot initiated a
‘Four-Legged Walking’ gait. While performing the gait, we detached the two spine modules. The
resulting configuration was two separate T-shape robots. In this situation each T-shape robot
continued the locomotion by executing the ‘Butterfly Stroke’ gait. Later, two T-shape robots
were re-connected and the resulting four-legged robot re-initiated the ‘Four-Legged Walking’
gait. The videos of these experiments are available at (http://www.isi.edu/robots).

3.4.2 DH2: Distributed Functional Language for Self-Reconfigurable Systems

A Self-Reconfigurable System is a special type of complex system that can autonomously
rearrange its software and hardware components. Such system is able to adapt its configuration
(such as shape, size or formation) to accomplish difficult missions in dynamic and uncertain
environments. A Distributed Self-Reconfigurable System is a network of autonomous,
homogeneous or heterogeneous reconfigurable modules (agents). Nodes of this network have a
special ability to change their physical or logical connectivity but also can perform generic, task-

. oriented actions. Distributed homogeneous systems have the advantage of being robust —since

they have no singe point of failure, are easy to repair and can be cheap to produce because of
modular equivalence. The rest of our discussion will focus on systems of this type.

A Self-Reconfigurable Robot is an embodied self-reconfigurable system that has a defined
morphology, computational facilities and a set of actuators, sensors and docks. Such robot offers
many potential advantages over robots of a conventional design, with the main advantage being
multi-functionality. For example a self-reconfigurable robot could become a “snake” to slither
into tight spaces that are hard to reach by humans or conventional robots. Then, it could morph
into an “octopus” and transform a leg into a gripper to manipulate objects. Such a robot could
divide itself into multiple independent agile units to accomplish tasks that require simultaneous
actions in different locations. A single self-reconfigurable robot could perform transportation,
inspection, assembly and many other functions with potentially much less cost than a large
collection of specialized conventional robots. Some steps have been made to realize this vision
" [11-13], however a lot of problems remain to be solved before it is accomplished.

54-67

The challenges in controlling of self-reconfigurable systems are abundant. Such a system has two
levels of behaviors that are highly coupled. On the low level local actions of each module are
determined by its state, sensor data and communication with other modules. On the high level
the whole system interacts with the environment to accomplish its current task. Part of the high
level behavior can be switching to a different configuration, which in its turn can change
behaviors of some modules. This circular interaction between the two behavior levels makes
controlling of self-reconfigurable systems a complex problem. For the system to be functional,
each module has to dynamically specialize its actions based on its position within the system so
that local actions do not conflict but complement each other in accomplishing the current task.
To act purposefully, modules have to be aware of the system's global state, environment
conditions and the status of the task completion. Thus, input data from heterogeneous or
homogeneous sensors must be integrated and redistributed among all the modules. On the high
level, a self-reconfigurable system must decide not only how to use its current configuration, but
also what configuration will be the best for the given task and environment, and how to switch to
that configuration with least cost. All these challenges make conventional centralized control
methods unsuitable for reconfigurable robotic systems. Generic and distributed control
architecture is required to make design and programming of such systems feasible and efficient.
We have identified the following features such architecture has to support:

o Decentralized Control: The architecture has to be distributed to avoid having a single point
of failure. Thus, global “names”, “identifiers” or “addresses” should not be used.

e Role-Based Functionality: The architecture must enable modules to function according to
where they are (i.e. what role they play) in the current configuration. The role should be
dynamically assumed by each module based on its local state, topological type and
information received from other modules.

e Dynamic Cooperation: The architecture has to support the ability of modules to cooperate
in achieving a desired global behavior. No predefined leaders should be assumed, and
division of labor among modules should be done through negotiation.

e Topology Discovery: Since new -configurations are to be dynamically formed, the
framework must provide modules with the ability to discover the new topology of the
-system through communication with_ their, neighbors. This is a crmcal capability for _
dynamic cooperation and self-healing.

e Global Synchronization: The architecture has to support synchronization without assuming
any global o’clock. This is required since for most tasks local actions of modules must be
synchronized to produce the desired global effects.

e Scalability: Since an optimal configuration for a given task is to be dynamically discovered
during mission, the control architecture has to support any shape or configuration of
arbitrary sizes.

o Adaptability: The architecture has to support ability of the system to evaluate the system’s
performance and reconfigure based on that evaluation.

Overview of DH2

To address the challenges in programming and controlling of self-reconfigurable robotic systems
we propose a distributed programming language DH2. Our approach mimics the hormonal and
neurotransmitter communication mechanisms existent in most biological species. A self-
reconfigurable system can be considered as a graph with each node being an autonomous cell

55-67

with its own power, processors, actuators, sensors, and connectors. A node can send “hormone”
messages to communicate with other nodes. Sending of a hormone can be triggered by the
already present hormones or by the environmental/task stimuli. Each node has a dynamic set of
receptors for binding and processing of hormones. When a receptor binds to a hormone actions
of the receptor are executed. Local actions include perception, locomotion, manipulation; as well
as creating and destroying links with other modules, generating and propagating hormones. The
first hormone in the system may come from an external source (e.g. a human operator), or
created by an existing receptor when triggered by a sensor input.

To summarize, execution of the receptors’ actions is triggered by hormones, and generation and
consumption of hormones is performed by receptors (Fig 1). This style of execution is scalable
with the system’s shape and size because all modules are created with identical sets of receptors
and do not need to know the entire configuration to be able to cooperate. The described
mechanism is capable of producing distributed locomotion behaviors and distributed changing of
the current system’s configuration to a new one.

Receptors

Local connectors I

Local sensors
incoming

hormones Local actuators I

Hormone

generators Output hormones >
\ e

Figure 7: The structure of receptor-hormone control mechanism.

The concept of Hormones has been used before in computer science and robotics research. This
includes Autonomous Decentralized Systems [14], homeostatic robot navigation [15] and
integration of behaviors using hormones [16]. To our knowledge the concept of hormones was
first applied to the problem of autonomous distributed reconfiguration and experiinentally tested

w-in our Jab [17-19] The.currentswork js an.attempt to generalize gnd formalize the.Hormone-. . __.

based control method as a distributed programming language.

DH2 differs from other distributed programming languages in the way it implements messaging
between system nodes. The hormone-like messages are similar, but not identical, to the content-
based messages. They do not use global identifications to propagate through the network, which
are commonly used in other distributed languages [20]. The hormone propagation is also
different from generic message broadcasting because a hormone may be modified during its
propagation and there is no guarantee that every module in the network will receive the same
copy of the original message. Hormones are similar but not identical to the pheromones [21, 22]
since hormones propagate from cell to cell without leaving residues in the environment.

The “Phase automata” programming model [23] presents an interesting way of generating
locomotion gates for modular robotic systems. It alleviates the necessity for gate tables and
allows hierarchical representation of complex behaviors distributed among groups of modules.
Different from DH2, the model uses unique module ids and explicit mappings of behaviors to
modules. The “Phase automata” model limits itself to periodic locomotion behaviors, whereas

56-67

ot i e

DH2 supports behaviors of arbitrary temporal structure and behaviors that could involve -
computations, sensing and other available functionalities. Other related work includes distributed
sensor networks [24], swarm robotics [25] and high-speed network protocols [26].

DH2 specifications

Any programming framework can be divided into two parts: a program itself and an execution
environment. A program is a symbolic representation of the author's intent regarding what a
computer or robot should do. An execution environment is a set of facilities that map the
program’s instructions onto computational or physical actions. Such an environment could be
implemented in various forms: a compiler, an interpreter an external library, a virtual machine
etc. In this section we try to describe DH2 in a generic way, abstracting from a specific
environment implementation. In the next section we will present how this description could be
implemented as a meta-language on top of C++.

A DH2 program consists of one or more receptor definitions (1). Receptor is defined (2) by its
triggering pattern and a list of actions. Receptor R; also has a numeric id and can be active or
passive. Receptors are defined within the module's state which is created and updated by the
execution environment. The state of a module is defined (3) by its fopological type T and four
sets of values: S — the values for each sensor, V — the values for each local variable, H — the
presence or absence of each hormone, R — the activity status for each receptor.

<program> — <receptor> {, <receptor>} 1)
<receptor> — <pattern>, <action> {, <action>}, id, <status> 2
<state> — <factor> = value {, <state>} g 3)
<pattern> — <factor> (== | !=) value | <pattern> (and | or) <pattern> (4)
<action> — computation | actuation H; = <status> | R; = <status>)
<status> — 0 — passive/absent | 1 — active/present 6)
<factor> - T | §; | Vi| Hi| R; . @)

Figure 8: Extended BNF representatlon of the DH2 program

‘A trlggcrmg paﬁem (4) 5f a recsptor defines-a-subset of module states that cuise sxenition of the

receptor's actions. The simplest pattern is reprcsented by a statement of equallty of one state’s
element to some value (e.g. H; == 1 - hormone i is present; S; == 10 - sensor i reads 10). More
complex patterns can be constructed recursively from simpler patterns using logical operators.
An action (5) of a receptor is either an execution of some functionality available in the module or
a specific change in the module’s state. The latter includes binding to the present hormones or
activation/inhibition of other receptors by changing the corresponding state variables.

Execution of a DH2 program proceeds in the infinite loop composed of two parts: receptor
execution and “bookkeeping” (Fig 9). In the first part, for each active receptor its pattern is
compared to the module’s state and, if successfully matched, the receptor’s actions are executed.
In the second part the state of the module is updated through receiving of new hormones,
topology discovery, connector status monitoring, readings sensor values etc. Since hormone
propagation is a crucial part of the DH2 execution environment we will describe it in detail.

module_process (ClockCycle) —
loop () —

57-67

Jor each active receptor Ri
if match(<state>, Ri <pattern>)
do all Ri <action>
(place generated hormones in Buffer)
for each hormone(_, [(x, y) | path]) in Mailbox
do ConnectorStatus [y] = x,
for each hormone (_, [(z,) | path]) in Buffer
do remove and send it via the connector z
if send fails (e.g. no receiver at the connector z)
do ConnectorStatus [z] = '
LocalTimer = mod (LocalTimer + 1, ClockCycle)
end

Figure 9: Main loop of the DH2 execution environment

A Hormone has the format (content, path), where content can be any term in DH2, and path is a
list of connector names through which the hormone has been propagated. A newly created
hormone has an empty path. If a hormone is propagated through a link 1(x, y), then its path is
assigned to [(x, y)| path]. If a hormone received by a module does not bind to any of its
receptors, it will be forwarded to all the links of the module, except the last link in the hormone’s
path (i.e. its source). In the acyclic configurations this algorithm assures that a hormone
generated by one module gets to all other modules without conflicts. Also the path of a hormone
is used to generate “reply” hormones with the original source as their destination.

The execution environment maintains a Mailbox for received hormones and a Buffer for
hormones to be propagated. It also monitors the status of each connector so that a module can
dynamically adapt to changes in the network and discover its local topology in time. The local
topology of a module is defined by a set of variables ConnectorStatus (e.g. {front=back, back=0}
= T2 - tail). Initially all ConnectorStatus [*] = 0. If a module’s connector X is in a link I(x, y),
then ConnectorStatus[x] is set to y when the module receives a hormone through x. Since every
module attempts to receive hormones from its connectors in every cycle of the program (Fig. 3),
the ConnectorStatus will be updated correctly whenever there is a Change ir=. the local links.

. Locomoticr znd reconfiguraticn pregrams ... e e s e

For the purpose of this section we will assume that DH2 is 1mp1emented accordmg to the
specifications and that the execution environment provides the following function to define a
receptor:

receptor ([Py (H), Pr (T), Ps(S), Pv(V)], [action; (argsy), ..., action; (args;)]) 8)

The first part of the function’s expression specifies the pattern-matching functions Py, Pr, Ps, Py,
and their parameters: H - the expected hormones, T - the expected local topology, S - the
expected local sensor values, and V - the expected local variable values. The second part of the
expression specifies actions to be executed by the receptor when all of the pattern-matching
functions evaluate to true. Using this definition we proceed to an example of a control program
for snake locomotion.

To make a CONRO snake configuration move in a caterpillar gate each module’s pitch motor
(DOF1) should go through a series of positions (e.g. +45°, -45°, -45°, +45°). However, these
local actions should be synchronized in such a way that their global effect is a forward

58-67

movement of the whole configuration. To coordinate the actions among modules a set of
hormones and receptors will be used. Using hormones each module will inform its immediate
neighbor what action it has selected so that the neighbor can make the appropriate choice itself
and continue the hormone propagation.

TABLEL DH2 PROGRAM FOR THE CATTERPILLAR GATE
Module type | Local Timer H |DOF1 |[New hormone
Tl 0 +45 | [(X,A),b]
T1 (1/4)ClackCycle] -45 | [(X,B),b]
Tl (1/2)ClockCycle 45 | [(XC),b]
Ti (3/4)ClockCycle +45 | [(X,D),b]
Ti6, T2 (X.A)| -45 | [(X,B),b]
T16, T2 v (X,B)| 45 | [X,0)b]
T16, T2 XC)| +45 | [(X,D),b]
T16, T2 (XD)| +45 | [(XA),b]

To implement this gait in DH2 we define 8 receptors and 4 hormones (Table I). Specifically, the
first four receptors will cause the head module (T1) to generate new hormones and send them to
the rest of the snake. The creation is triggered based on the value of the variable LocalTimer that
results in four hormones per ClockCycle. The last four receptors will cause all the body modules
(T16) to set their DOF1 to corresponding angles. These modules will receive hormones through
the front connector f and propagate hormones through the back connector b. When a hormone
reaches the tail module (T2), the propagation will stop because this module’s back connector is
not connected to any links. The speed of the caterpillar gait is determined by the value of the
ClockCycle. The smaller the value is, the more frequent the head generates new hormones, and
thus faster the caterpillar moves. The first and the fifth receptors for the caterpillar gate can be
created using the provided function (8) as follows:

receptor ([= (T, 1), = (LocalTimer, 0)], [DOF1 (+45), hormone ([X, A), B]), keep_alive ()])
receptor ([= (T, {16, 2}), = (H, (x, A))], [DOF1 (-45), hormone ([X. B) B]) keep_alive ())).

‘The above example works for snakes of arbitrary length and allows modules to be arranged
- randomly in the configuration. ~Similar advantages can also be achiéved ifi “controlling the
process of reconfiguration. A single hormone will be sufficient to trigger a change of one
configuration into another, and there will be no need to give low-level instructions to individual
modules. For example, to reconfigure a legged CONRO robot into a snake, the action sequence
could be as follows: the robot first connects its tail to a foot, and then disconnects the connected
leg from the body so that the leg becomes a part of the tail. This compound action is repeated
until all legs are “assimilated”. The lower-level actions that implement this process are those that
enable the tail to find a foot, to align and dock with the foot, and then disconnect the leg from the
body [27].

This action sequence can be implemented using hormones and receptors as follows. The
reconfiguration process is triggered by introducing an LTS (Legs To Snake) hormone into the
system through any module. This hormone eventually propagates to all modules, but only the
foot modules (T5 or T6) have the receptors to react to the LTS hormone and generate a “reply”
hormone RCT (Request to Connect to the Tail). Every foot will periodically generate an RCT as
long as it is still a foot. Only the current tail module (T2) has a receptor for RCT, and upon

59-67

receiving an RCT, this receptor will acknowledge the sender (using the path in the received
RCT) with a TAR hormone (Tail Accept Request), and will terminate itself so that no more RCT
will be bound at this tail module. When receiving the TAR hormone, the selected foot module
stops generating RCT hormones, and generates.a new hormone ALT (Assimilate Leg into Tail)
to inform all the modules in the path to perform the actions of bending, aligning, and docking the
tail to the foot. When these actions are accomplished, the new tail module will create a new
receptor for accepting other RCT hormones, and another leg assimilation sequence will start.
This process will repeat until all legs are assimilated, and it is independent of how many legs are
in the current configuration. Thus, if the reconfiguration sequence was stopped unexpectedly or
prematurely, the process can resume itself correctly after the interruption is over. To implement
this sequence in DH2, four types of receptors must be in place to bind and react to LTS, RCT,
TAR, and ALT hormones. These receptors can be created as follows:

receptor ([= (T, {5, 6}), = (H, LTS)], [periodical_hormone ([RCT, _]])

receptor ([= (T, 2), = (H, (RCT, path))], [hormone(TAR, path™)])

receptor ([= (T, {5, 6}), = (H, (TAR, path))], [stop_hormone(RCT), hormone(ALT, path™)]),
receptor ([= (H, ALT)], [assist_ leg_assimilation()])

The first receptor allows a foot to react to LTS and create RCT. The second receptor allows a tail
to react to RCT and reply with TAR. The third receptor allows a foot module to react to TAR
and acknowledge it with an ALT. The fourth receptor will enable all modules in the spinal cord
to assist in leg assimilation.

Experimental Results

In order to test the proposed architecture experimentally we have implemented the DH2
programming environment as a meta-language on top of C++. The triggering pattern of a
receptor is represented by a regular expression containing a set of the required environment
factors and their values. For example a pattern for some periodic action by a tail module can be
represented as follows: “(.*,((T2[T19)[t0),.*){2}“, where “T2” and “T19” represent the
topological type “tail” and “t0” - timer equal to zero. This regular expression can be matched
with a string that contains “t0”, and “T2” or “T19” in any order (e.g. “t0,T19”, “T2,t0” but not

. “T3,t0”). State of each module is represented as a multidimensionz! array of values. for hormone

presence, sensor values, receptor status etc. In order to match the current state against patterns of
each receptor the state is converted to a string of the form: “<factor><value>, <factor><value>,
...”. Conventions that are used are: “xy” means local variable x is equal to y, “Hi” means
hormone i is present, “Ti” means current topological type is i etc. The resulting string is matched
against the patterns using C++ regular expression routines. If matching is successful, then actions
of the corresponding receptor are executed. The actions are implemented as static function
pointers accessible to any module process. The action functions accept a module pointer as their
only parameter to be able to access that module’s state variables. The module’s state is
encapsulated in a class DHController. An instance of this class gets attached to a Module object
(Fig. 10) and when executed runs the infinite control loop as defined in the DH2 specification by
executing receptors, sending corresponding commands to the module's actuators, updating
module’s state, propagating hormones etc.

60-67

oA S AR T e s 42

Module I-——- Servo
+jotnts: Servo . +setingle()

+controller: DH2
+1ink: Wodulell}
DHController

Receptor |—<«<t¢receptors: Receptor{]
+inconing: Hormone(}
+toutgoing: Hormonel)
‘run() cactiveReceptors: booll)
+topology: int
+timer; int

Hormone ranty
+from: string sattach()
+to: string +detach{)

*trigger: string

Figure 10: Class diagram of the DH2 environment

The implemented DH2 environment was used to control a set of simulated CONRO modules.
Our goal was to create a reasonably close model of a CONRO robot in an environment that
approximates the natural physics. After considering several commercial and free simulation
environments, we decided to use Open Dynamics Engine (ODE) — an open source software
library for simulation of rigid body dynamics, developed by Russell Smith. Using ODE's API we
have developed a hierarchy of classes (Fig. 10) that represent static and dynamic properties of a
virtual CONRO module.

Morphology of the CONRO model was intentionally simplified to make the simulation more
efficient. A module is composed of three rectangular bodies joint by two actuators with pitch and
yaw DOFs. Values for dimensions and masses of the bodies as well as maximum available force
and angular speed for the servos were obtained from measurements and documentation.
Relationship between dimension units of the simulation environment was set to represent the
metric system. Since the physics engine has many free variables that determine stability and
accuracy of the simulation, several prototype experiments were created to determine the optimal
settings. Simulation of friction was set to a “pyramid model”, with “contact slip” in both
directions. Since the default setting for the friction direction produced inconsistent behaviors
dependent on the model’s orientation, the friction direction was dynamically updated in the
module’s frame of reference. - g

Locomotion in different configurations

Each experiment was conducted in the following manner: a set of modules and controllers were
created, modules were positioned into the target configuration, the corresponding modules were
docked to establish communication links between their controllers, and then the simulation was
set to run. The following configurations were tested: snake of 1, 5, 8, and 20 modules, tripod,
quadruped, hexapod, and octopod. For all of the above configurations, successful locomotion
was generated by the same set of 20 receptors — four for each topology type: head, snake body,
left leg, right leg, and spine. This demonstrates that the same DH2 program can be reused for
different configurations.

To demonstrate robustness of the control using DH2, we have done “live surgery” on a set of
moving modules. A timed event was programmed to break one of the links and to split the
original configuration into two separate ones. For example in one experiment an 8-module snake
was broken into two, four and then eight separate snakes. At the moment of each division we
observed snake body modules discovering their new topology types and taking over the
leadership in the newly formed snake. In another experiment, a walking octopod was split into

61-67

A s el e e AT

v

two quadrupeds that proceeded with their movement independently without any interruption or
code modification. This demonstrates the utility of distributed control without using of unique
identifications.

Reconfiguration

In the beginning of each experiment, modules were put into a certain configuration and left
running in their locomotion gait for some time. Then a signal for reconfiguration was sent to an
arbitrary module in the system, after which modules were supposed to change their configuration
and continue locomotion using new

gaits. The following morphology
changes have been tested: an 8-module
snake to a T-shape; a 9-module snake
to a quadruped and a 3-module snake;
a dragon to an 11-module snake. In
addition to the locomotion receptors
used in the first set of experiments,
modules needed only a small set of
additional receptors to successfully
accomplish all of the above
morphology changes. For example for
the reconfiguration from a legged , H]
robot to a snake 10 additional One leg has assimilated into the tail ~ The new tail connect
receptors were used. Figure 11 shows
some steps in morphing of a legged
“dragon” to a snake conﬁguratlon Videos demonstrating this and other experlmcnts can be
found at our website http://www.isi.edu/robots/movies/.

Ready to reconfigure The tail has connected to a leg

03" leg

Figure 11: Steps of the “dragon” to snake reconfiguration

Results of our experiments demonstrate that DH2 provides a flexible development framework for
programming of distributed locomotion and reconfiguration behaviors. It is our belief that this
framework can be successfully employed on other distributed platforms and it is one of our
future goals to test that. In the current implementation change of morphology is triggered by an
external high-level signal. We plan to show in future tha- DH2 can be used to program

. auioriomous discovery of-the optimai-configuration based on' serisur daa. If successful this could -

produce such desirable behaviors as adaptive locomotion and self-healing. Generalizing of the
DH2 model to the level of an encoding scheme could make it possible to use Genetic Algorithms
for generation of new behaviors and configurations. We are also interested to explore general
computational capabilities of DH2 architecture and to determine a set of problems that could be
solved using it.

62-67

4 Personnel Supported
2000-2001:

Dr. Wei-Min Shen (10%, 12/2000 — 08/2001)

Dr. Sattiraju Prabhakar (100%, 12/2000 — 08/2001)
Dr. Leila Meshkat (50%, 06/2001 — 08/2001)
Aseem Mohanty (50%, 01/2001 — 06/2001)

2001-2002:

Dr. Wei-Min Shen (15%, 09/01/2001 — 08/31/2002)
Dr. Sattiraju Prabhakar (100%, 09/01/2001 — 03/31/2002)

2002-2003:

Dr. Wei-Min Shen (15%, 09/01/2002 — 08/31/2003)
Behnam Salemi (50%, 09/01/2002 — 08/31/2003)

2003-2004:

Dr. Wei-Min Shen (35%, 09/01/2003 — 08/31/2004)
Behnam Salemi (50%, 09/01/2003 — 12/31/2003)
Maks Krivokon (50%, 01/01/2003 — 8/31/2004)
Michael Rubenstein (25%, 05/01/2004 — 8/31/2004)

5 Publications
e B. Salemi, WM. Shen and P. Will. Hormone Controlled Metamorphic Robots, in the

Proceedings of International Conference on Robotics and Automation, Seoul, Korea,
May. 2001. ‘
WM. Shen, B. Salemi and P. Will. Hormone for self-reconfigurable robots, in the
Proceedings of International Conference on Intelligent Autonomous Systems, I0S Press,
pp- 918-925, 2000.

WM. Shen, Y. Lu and P. Will, Hormone-based control for self-reconfigurable robots, in
the Proceedings of International Conference on Autonomous Agents, Barcelona, Spain,
2000.

WM. Shen, B. Salemi, and P. Will, Hormone-based Communication and Cooperation in

Metamorphi_c_: qugqgs, subrpltted gotthe IEEE Tgansactions on Robotics and Automgtig)n? e

2001. :

Shen, W.-M., C.-M. Choung, P. Will, Simulating Self-Organization for Multi-Robot
Systems, International Conference on Intelligent and Robotic Systems, Switzerland,
2002.

Shen, W.-M., B. Salemi, and P. Will, Hormone-Inspired Adaptive Communication and
Distributed Control for CONRO Self-Reconfigurable Robots, IEEE Transactions on
Robotics and Automation, (in print), October, 2002.

Shen, W.-M. and B. Salemi, Distributed and Dynamic Task Reallocations in Robot
Organization , IEEE Conference on Robotics and Automation, Washington DC, 2002.

K. Stoy, W.-M. Shen, and P. Will, "On the Use of Sensors in Self-Reconfigurable
Robots." In proceedings of the 7th international conference on simulation of adaptive
behavior (SAB02), Edinburgh, UK, August 4-9, 2002.

63-67

K. Stoy, W.-M. Shen, and P. Will, "How to Make a Self-Reconfigurable Robot Run", In
proceedings of the lst international joint conference on autonomous agents and
multiagent systems (AAMAS'02), Bologna, Italy, July 15-19, 2002.

K. Stgy, W.-M. Shen, and P. Will, "Global Locomotion from Local Interaction in Self-
Reconfigurable Robots", In proceedings of the 7th international conference on intelligent

" autonomous systems (IAS-7), Marina del Rey, California, USA, March 25-27, 2002.

Salemi, B., P. Will, and W.-M. Shen, Distributed Task Negotiation in Modular Robots,
Special Issue on "Modular Robotics", Journal of the Robotics Society of Japan (RSJ),
2003.

Salemi, B., Experimental Evaluation of Distributed Control for Chain-Type Self-
Reconfigurable Robots, PhD Thesis, University of Southern California, 2003.

Shen, W.-M., B. Salemi, and P. Will. Hormone-Inspired Adaptive Communication and
Distributed Control for CONRO Self-Reconfigurable Robots, IEEE Transactions on
Robotics and Automation, 18(5), October, 2002 '

Shen, W.-M., P. Will, C.-M. Chuong, Self-organization and Distributed Control for
Massive Robot Swarms, Autonomous Robots, (submitted), 2003

Shen, W.-M., Self-Organization through Digital Hormones (invited), IEEE Intelligent
Systems, 81-83, 8/2003.

Stoy, K., W.-M. Shen, P. Will, Global Locomotion from Local Interaction in Self-
Reconfigurable Robots, Robotics and Autonomous Systems, (in press) 2003.

Shen, W.-M., P. Will, B. Khoshnevis, Autonomous Docking in Self-Reconfigurable
Robots, IEEE Transactions on Mechatronics, (accepted) 2003.

Shen, W.-M., P. Will, B. Khoshnevis, Self-Assembly in Space via Self-Reconfigurable
Robots, International Conference on Robotics and Automation, Taiwan, 2003.

Stoy, K., W.-M. Shen, P. Will, Implementing Configuration Dependent Gaits in Self-
Reconfigurable Robots, International Conference on Robotics and Automation, Taiwan,
2003. ,

B. Khoshnevis, P. Will, W.-M. Shen, Highly Compliant and Self-Tightening Docking
Modules for Precise and Fast Connection of Self-Reconfigurable Robots, International
Conference on Robotics and Automation, Taiwan, 2003.

Shen, W.-M, P. Will, A. Galstyan, C.-M. Chuong, Hormone-inspired self-organization

" and distributed control of robotic swarms, Autonomous Robots, 17:93-105, 20047~ 7

Jiang, T-X. , Wideltz, RB., Shen, W.-M.,, Will, P., Wu, DY., Lin, CM,, Jung, JS.,
Chuong, CM., 2004. Integument pattern formation involves genetic and epigenetic
controls operated at different levels: Feather arrays simulated by a digital hormone
model. International Journal on Developmental Biology, 48 (pages), 2004.

Modi, P. J., W.-M. Shen, M. Tambe, and M. Yokoo, ADOPT: Asynchronous Distributed
Constraint Optimization with Quality Guarantees, Artificial Intelligence, 2004.

Salemi B., Will P., and Shen W.-M. Distributed Task Negotiation in Modular Robots,
Robotics Society of Japan, Special Issue on "Modular Robots", 2003.

Shen, W.-M., Self-Organization through Digital Hormones, IEEE Intelligent Systems,
July/August, 2003, pp 81-83.

Shen, W.-M., B. Salemi, and P. Will, Hormone-Inspired Adaptive Communication and
Distributed Control for CONRO Self-Reconfigurable Robots, IEEE Transactions on
Robotics and Automation, 18(5), October, 2002.

64-67

Stoy, K, W.-M. Shen, P. Will, Using Role-Based Control to Produce Locomotion in
Chain-type Self-Reconfigurable Robots, IEEE Transactions on Mechatronics, 7(4), 410-
417, Dec. 2002.

Rubenstein, M., K. Payne, P. Will, W.-M. Shen, Docking among Independent and
Autonomous CONRO Self-Recofigurable Robots, International Conference on Robotics
and Automation. April-May 2004, New Orleans, USA.

Salemi, B. and Wei-Min Shen. Distributed Behavior Collaboration _for Self-
Reconfigurable Robots. International Conference on Robotics and Automation. April-
May 2004, New Orleans, USA.

Behnam Salemi, Peter Will, Wei-Min Shen, Distributed Task Negotiation in Self-
Reconfigurable Robots, International Conference on Intelligent Robots and Systems. Las
Vegas, October 2003.

Shen, W.-M., P. Will, B. Khoshnevis, Self-Assembly in Space via Self-Reconfigurable
Robots, International Conference on Robotics and Automation, Taiwan, 2003.

Stoy, K., W.-M. Shen, P. Will, Implementing Configuration Dependent Gaits in Self-
Reconfigurable Robots, International Conference on Robotics and Automation, Taiwan,
2003.

B. Khoshnevis, P. Will, W.-M. Shen, Highly Compliant and Self- Tlghtemng Docking
Modules for Precise and Fast Connection of Self-Reconfigurable Robots, International
Conference on Robotics and Automation, Taiwan, 2003.

6 Interactions and Transitions

In 2000-2001, we presented our papers on self-organization at three international conferences:
the international conference on Robotics and Automation, the international conference on
Autonomous Agents, and the international conference on Intelligent Autonomous Systems.

During the lifetime of the project, Dr. Wei-Min Shen has been invited to give many talks:

An invited plenary talk, the TTI/Vanguard Conference on the Future of Software, 2001.
NASA Workshop on Human and Robotic Space Exploration, NASA Langley Research
Center, November, 2001.

NASA -Ames Research Center, Homone«lnspxrcd Control for Self-Reconfisurable
Robots, September, 2001.

Naval Research Laboratory, Invited AI Seminar on self-reconfigurable robots,
Washington, DC, June, 2002.

UCLA CS Seminar, Self- Reconﬁgurable Robots and Dlgltal Hormones Los Angeles,
January, 2002.

Invited to Australian Center for Field Robotics Seminar, University of Sydney, Self-
Reconfigurable Robots, 7/24/2003

Invited to UC San Diego Al Seminar, Self-Reconfigurable Robots and Digital Hormones
2/22/2003.

In 2004, Dr. Wei-Min Shen served as a guest editor for the Special Issue for Self-Reconfigurable
Robots, IEEE Transactions on Mechatronics, 2004.

65-67

Py e

7 New Discoveries, Inventions, or Patent Disclosures

US Patent Award #6636781: Distributed Control and Coordination of Autonomous Agents in a
Dynamic, Reconfigurable System, October 21, 2003 by Shen, W.-M., B. Salemi, and P. Will.

8 Honors and Awards

This project has been received the following honors and awards:

o Just What We Need — Hormonal Robots, By Matthew Nelson, InformationWeek,
Nov 28, 2000.

« Digital Hormones for Robots, SCIENCE AND ENGINEERING NEWS, HPCwire,
www.newscientist.com, April 13, 2001.

« Digital Hormones for Robots, New Scientist, April 14 2001 (p.22)

 Leading Research in Self-Reconfigurable Robots, The World Daily Newspaper, March,
2001.

o The Best Paper Award: The 7th International Conference on Simulation of Adaptive
Behaviors (SAB2002) the Paper with Most Philosophical Consequences: On the Use of
Sensors in Self-Reconfigurable Robots , by K. Stay and W.-M. Shen and P. Will.

During the 2002 Annual Conference of Artificial Intelligence, several Canadian newspapers
reported the project. They are “Edmonton Journal” July 31, 2002, and “Calgary Herald” July 31,
2002.

In 2003, Dr. Wei-Min Shen has received a Phi Kappa Phi Faculty Recognition Award from the
University of Southern California.

In 2004, Dr. Wei-Min Shen was invited to give a plenary talk at the 2004 International
Conference on Complex Systems, Boston, (May 2004). Nature and Science had both reported the
work from this project as follows:

‘nature.com

the world's hest science on your deskiop (May 28th; 20(}4 e o e e

Puckish Robots Pull Together: A story about prototype robots whlch practlce dockmg
maneuvers on an air hockey table was explained by Wei-Min Shen of USC's Viterbi School of
Engineering. Given the hazards of human space travel, Shen believes robots are the best bet for
building structures in space. "Assembly performed by astronauts would be too expensive and
risky," he said. Shen's group is collaborating with NASA to develop intelligent robotic systems
that can coordinate their own activities, requiring less human control and monitoring.

cience |
(Au,qust 8th, 2003): The work of USC School of Engineering robotics

experts Wei-Min Shen and Peter Will is described in detail in a long report in the August 8 issue
on "Shape Shifting Robots.” Will and Shen's CONRO robots "have an especially spectacular
ability to adapt on the fly.... 'The surprise in people's eyes when they see this is amazing,' Will
says. 'When the thing gets up and walks all your human feelings about robots come out. Some
people cheer for it, other people find it scary.' CONRO's adaptability comes from an innovative,

66-67

decentralized control system, analogous to biological hormones. 'In the body, the same signal
causes your hand to wave, your mouth to open and your legs to move,’ explains Shen. Similarly
in a CONRO robot, a module's reaction to signals (or 'hormones’) from other modules depends
on its current function....In the future, modular robots may be used to build power stations in
space (a project the CONRO team is working on) or conduct search and rescue operations.

s e ot o ek S5 T IV AT P ST S e YT]

67-67

